几类抛物型方程反边值问题的数值求解
[Abstract]:The diffusion process is an important natural phenomenon. From the mathematical research, the diffusion process can be described by a parabolic equation model with a fixed solution under certain assumptions. In many cases, the physical mechanism of the diffusion process is clear (corresponding to the diffusion equation is known), but the boundary state information describing the diffusion process is unknown, at which time the boundary state information needs to be inverted by other measurable indirect information, and thus the entire diffusion process is determined. This kind of problem is the inverse boundary value problem of the diffusion equation model. The boundary condition is an important parameter of the parabolic equation describing the diffusion system, including boundary shape and boundary condition parameters. Boundary conditions mainly include Dirichlet boundary conditions, Neumann boundary conditions and more general Robin (damping) boundary conditions. The Robin coefficient in the Robin boundary condition indicates the damping effect of the boundary interface on the whole diffusion process, which is of great significance in the engineering application. There are many researches on the inverse problem of the first two boundary conditions, and the research work on the inversion of the Robin coefficient is less, especially the problem of the inversion of the non-continuous Robin coefficient, and has less work. The difficulty of the mathematics is that the reconstruction of the Robin coefficient is a class-class non-linear discomfort problem. This obviously increases the difficulty of theoretical analysis and numerical implementation of the inverse problem. Therefore, this paper studies the inversion of the Robin coefficient and the related problems, and the main work includes the following three aspects. First, the integration type data on the time direction on the boundary is used to retrieve the Robin coefficient which is dependent on the spatial variable. In many physical circumstances, the point-by-point data of the diffusion concentration is difficult to measure due to the limitation of objective conditions, and some (time or space) average value of the diffusion concentration is relatively easy to measure, so it is more practical to study the non-local integral type measurement data. In recent years, the data of this kind of data are used to retrieve the relevant parameters, and the measurement data of this partial inverse problem is this kind of non-local data. In this paper, the uniqueness is set up in this paper, and the condition stability is established for the first time. It is proved that the non-linear inverse problem model is transformed into a non-linear integral equation system with respect to the coupling of the undetermined density function and the unknown Robin coefficient based on the potential expression of the solution. On this basis, the double-parameter regularization function is constructed, and the appropriate and the convergence of the optimization scheme are analyzed strictly from the theory. In the aspect of numerical realization, the alternative iteration method proposed by us is faster, the inversion effect is better, and the advantage is more obvious for the noise data with large error compared with the existing common-current gradient method. Next, the inverse problem of the boundary Robin coefficient and the initial state is studied by using the temperature (concentration) distribution at the end time. the inversion of the initial state is a classical linear inverse problem, which has a wide application background in the industry, but in the case where the boundary Robin coefficient is also unknown, the inverse problem is more important than the unknown component, and more importantly, the inverse problem becomes non-linear, so that the inversion difficulty of the initial state and the Robin coefficient is more difficult and more meaningful. The existing research is essentially blank. In order to solve this problem, this paper uses the principle of the maximum value and the characteristic function to expand the theory, and proves that the Robin coefficient is uniquely determined within the permission set. Further, based on the quasi-inverse regularized idea of data burnishing and combining initial values, a regularized scheme for reconstructing two parameters at the same time is proposed, and the regularization parameter selection strategy and error analysis are given. The reconstruction scheme of this paper is carried out in two steps. The first step rebuilds the Robin coefficient, and the second step reconstructs the initial value based on the reconstructed Robin coefficient, and it is clear that the reconstruction of the first step is critical to the overall reconstruction scheme and that the entire reconstruction scheme is non-linear. In this paper, the error transfer between two steps is analyzed in detail, and the selection strategy of regularized parameters is given, which is the important innovation of this paper. On this basis, the effective numerical solution is proposed based on the potential theory, and the numerical results are consistent with the results of the theoretical analysis. Finally, in the one-dimensional diffusion model, the non-continuous Robin coefficient at the other end of the boundary is inverted by the Dirichlet data at one end of the boundary (as a function of the time variable). In practical engineering, the non-continuous boundary Robin coefficient is very important, which may indicate a certain type of fault inside the system, then the Robin coefficient can be used as an important index for detecting the failure of the system. In this case, the detection of the non-continuous Robin coefficient, in particular the detection of the discontinuous position, is of particular importance. In this paper, the uniqueness of the inverse problem is set up in the permission set of the L2 space based on the Fourier transform. Our results are different from the uniqueness of the continuous function space, which is another theoretical innovation point of this paper. In addition, this paper is to transform the original problem into the optimization problem with the total variogram, and the regularized scheme is analyzed theoretically. In this paper, an effective two-cycle iterative algorithm is proposed. The basic idea of the algorithm is to iterate the non-linear data matching term and the approximate full-variation penalty term to realize the minimization. The strategy of the alternative iteration can reduce the non-linearity of the original problem on the one hand, without taking into account the selection of the regularized parameters, and on the other hand, the calculation speed can be improved. At the same time, the idea of alternating iterative processing according to different properties of non-linear term can also be extended to the numerical solution containing multiple non-linear terms, which has important reference significance to the numerical solution of other related problems.
【学位授予单位】:东南大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:O241.82
【相似文献】
相关期刊论文 前10条
1 莫嘉琪;The Nonlinear Predator-Prey Singularly Perturbed Robin Initial Boundary Value Problems for Reaction Diffusion System[J];Journal of Shanghai Jiaotong University;2003年02期
2 ;A Robin Problem for Quasi-linear System[J];数学季刊;2004年02期
3 张艳芳;张郑芳;;带正则项的Robin反问题的Γ-收敛性[J];杭州电子科技大学学报;2013年03期
4 邹中华,杜正国,徐伟成;催化剂颗粒中的Robin问题[J];华东化工学院学报;1992年06期
5 WU Qinkuan;WANG Weigang;CHEN Xianfeng;XU Yonghong;MO Jiaqi;;Generalized Solution of A Class of Singularly Perturbed Robin Problems for Nonlinear Reaction Diffusion Equation[J];Wuhan University Journal of Natural Sciences;2014年02期
6 郝兆才,刘明海;奇异二阶边值问题的正解[J];工程数学学报;2001年01期
7 杨会生,武锡环,杨作东;一类拟线性椭圆型方程带平边值问题解的存在性(英文)[J];工程数学学报;2001年03期
8 孙万贵,叶建军,吴开谡 ,阳明珠;抽象边值问题中的双半群方法[J];中国原子能科学研究院年报;2001年00期
9 张霞,李星;非正则型复合边值问题[J];宁夏大学学报(自然科学版);2002年03期
10 张福伟,刘进生;一类四阶方程边值问题正解的存在性[J];太原理工大学学报;2003年05期
相关会议论文 前10条
1 牛文清;董莹;;泛函偏微分方程边值问题解的渐近性态[A];数学·力学·物理学·高新技术研究进展——2004(10)卷——中国数学力学物理学高新技术交叉研究会第10届学术研讨会论文集[C];2004年
2 杨宗孟;;矩形平面应力边值问题的统一奇异函数解[A];第五届全国结构工程学术会议论文集(第一卷)[C];1996年
3 于锦海;罗东方;朱明;;求解超定大地边值问题的新方法[A];《大地测量与地球动力学进展》论文集[C];2004年
4 黎凡;;Pierre Robin 综合症婴儿期腭裂术后气道梗阻原因及处理探讨[A];第七届全国唇腭裂学术会议论文集[C];2009年
5 张庆华;夏萌;曲媛媛;;解析求解不规则区域(线性微分方程)边值问题的基本构想[A];第五届全国水动力学学术会议暨第十五届全国水动力学研讨会文集[C];2001年
6 贾继承;;边值问题综述(重力学)[A];1992年中国地球物理学会第八届学术年会论文集[C];1992年
7 黄金水;朱灼文;;重调和环域边值问题与地幔密度横向非均匀性[A];1999年中国地球物理学会年刊——中国地球物理学会第十五届年会论文集[C];1999年
8 万腾;王国民;;Robin序列征患者16例回顾[A];第七届全国唇腭裂学术会议论文集[C];2009年
9 袁光伟;沈隆钧;周毓麟;;抛物型方程的并行差分[A];中国工程物理研究院科技年报(2000)[C];2000年
10 赵为礼;;奇异非线性Robin问题的奇摄动[A];数学·物理·力学·高新技术研究进展(一九九六·第六期)——中国数学力学物理学高新技术交叉研究会第6届学术研讨会论文集[C];1996年
相关重要报纸文章 前1条
1 学军;创业公司Robin:打造超智能办公室[N];中国证券报;2014年
相关博士学位论文 前10条
1 王玉婵;几类抛物型方程反边值问题的数值求解[D];东南大学;2017年
2 丁友征;几类边值问题解的存在性与多重性[D];山东大学;2015年
3 王华;偏微分方程的黏性解、爆破及相关问题研究[D];山西大学;2015年
4 张洋;偏微分方程两类边值问题的定性分析[D];哈尔滨工业大学;2015年
5 王颖;非线性微分方程边值问题正解的存在性研究[D];曲阜师范大学;2015年
6 胡雷;几类分数阶微分方程共振边值问题解的存在性[D];中国矿业大学(北京);2015年
7 沈开明;边值问题中的特征值优化[D];清华大学;2015年
8 吴彦强;微分方程边值问题的解和正解的存在性[D];中国矿业大学;2016年
9 林秀丽;几类非线性微分方程边值问题的迭代解与变号解[D];曲阜师范大学;2016年
10 谭静静;关于分数阶微分方程边值问题解的研究[D];北京工业大学;2016年
相关硕士学位论文 前10条
1 张元元;带Robin边界条件的2维随机广义Ginzburg-Landau方程的适定性及其长时间性态[D];四川师范大学;2015年
2 杨婧;具有临界指数和Robin边界的kirchhoff方程解的存在性和耗散性[D];四川师范大学;2015年
3 张慧萍;一类抛物型方程Robin边界系数的反演[D];东南大学;2015年
4 崔文标;拉普拉斯方程矩形域上Robin系数的反演[D];东南大学;2016年
5 杨雪;n阶m点边值问题和四阶奇异边值问题的正解[D];东北大学;2008年
6 邸庆华;各项异性边值问题与障碍问题解的可积性[D];河北大学;2015年
7 严凯;几类非线性分数阶微分方程边值问题解的存在性[D];上海师范大学;2015年
8 龚平;几类非线性分数阶微分方程边值问题正解的研究[D];昆明理工大学;2015年
9 严洁;带积分边界条件的边值问题正解的存在性[D];南京信息工程大学;2015年
10 李莉;三阶非线性三点边值问题解的存在性和唯一性[D];大连交通大学;2015年
,本文编号:2376813
本文链接:https://www.wllwen.com/kejilunwen/yysx/2376813.html