Tricomi方程极点在椭圆区域的基本解
[Abstract]:The second order differential equation Tu=yu_ (xx) u _ (yy) = 0 for the independent variable xy is called Tricomi equation. It is a classical example of mixed partial differential equation, and T is called Tricomi operator. The equation is elliptic on the upper half plane y > 0, parabolic on the x axis y 0 and hyperbolic on the lower half plane y < 0. Hybrid equations are important partial differential equations, which are widely used in mathematics, physics and gas dynamics [1-50]. For example, smooth steady transonic flow satisfies a mixed equation. But for the uniform elliptic equation and the uniform hyperbolic equation, the mixed equation needs to be further studied. The Tricomi operator is invariant under the (3 ~ 2) -scale transformation. According to the usual practice of physicists, the Tricomi operator has a homogeneous solution corresponding to this scale transformation. Barros-Neto and Gelfand [6] obtain the fundamental solutions F and F of the Tricomi operator poles on the degenerate line by using the characteristic method and the homogeneity of the Tricomi operator. In the first chapter, the background knowledge and the main ideas of the proof are introduced. Barros-Neto and Gelfand [7] also obtain the basic solutions of the Tricomi operator poles in the elliptic region by using the characteristic method. The second chapter introduces the main methods of its proof. In particular, when the poles tend to degenerate, the limit of the fundamental solution is a linear combination of (10) F and -F. The sum of real part coefficients is 1, and the sum of imaginary part coefficients counteracts, so the limit is still the basic solution of Tricomi operator T. In the third chapter, we use the series expansion method of Barros-Neto and Cardoso [3] to obtain the basic solution of the pole of Tricomi operator in the new form of elliptic domain, when the pole tends to degenerate. The limit behavior of the basic solution is different from that obtained by Barros-Neto and Gelfand [7]: the limit of the fundamental solution is also a linear combination of F and F-, but the sum of the real part coefficient is not 1, the sum of the imaginary part coefficient is not offset. So the limit is no longer the basic solution of Tricomi operator T. The work in this paper will be helpful for the further study of the boundary value problem and Cauchy problem of the mixed equation in the future.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:O175.28
【相似文献】
相关期刊论文 前10条
1 吴莉娜;蒋泉;;基本解方法中多对称问题基本解函数的重构及应用[J];南通大学学报(自然科学版);2013年02期
2 丁华建;魏海娥;吴莉娜;蒋泉;周志东;;对称域基本解函数的构造及应用[J];南通大学学报(自然科学版);2011年04期
3 王宽小;;方程X~2+Y~2=Z~2基本解的表示[J];阴山学刊(自然科学);2010年02期
4 黄凤辉;;时间空间分数阶对流-弥散方程的基本解[J];内蒙古师范大学学报(自然科学汉文版);2009年04期
5 庄宏,严宗毅,吴望一;三维斯托克斯流动在扁球坐标系中的基本解及其应用[J];应用数学和力学;2002年05期
6 屈爱芳;;Tricomi算子的基本解[J];数学学报;2008年04期
7 朱继梅,相小宁;Tchebychev近似基本解的边界元法在结构边界条件识别中的应用[J];上海机械学院学报;1992年03期
8 王金玉;孙方裕;;基于测地距离的基本解方法求解非齐次各向异性IHCP问题[J];浙江大学学报(理学版);2009年01期
9 唐耀宗;;基本解方法在美式看跌期权定价中的应用[J];重庆工商大学学报(自然科学版);2009年05期
10 张劲,王宇,王秀喜,张士诚;半无限大层状均匀各向同性介质的基本解[J];中国科学技术大学学报;2001年02期
相关博士学位论文 前2条
1 杨震;薄膜涂层内部受集中力的基本解及其应用[D];上海交通大学;2010年
2 甘信军;伊藤扩散中的弱对偶以及基本解的蒙特卡罗模拟[D];山东大学;2012年
相关硕士学位论文 前6条
1 王涛;一维和二维六方准晶的一些基本解[D];西南交通大学;2015年
2 费美琴;Tricomi方程极点在椭圆区域的基本解[D];江苏大学;2016年
3 徐州;识别热方程移动边界的一种基本解方法[D];兰州大学;2012年
4 王俊超;利用基本解方法反演热源和初始温度[D];兰州大学;2013年
5 胡勇;热方程未知源识别的计算方法[D];兰州大学;2013年
6 刘远;对于热方程基本解的上界估计[D];中国科学技术大学;2014年
,本文编号:2392734
本文链接:https://www.wllwen.com/kejilunwen/yysx/2392734.html