分数阶非线性微分方程初值问题的上下解方法
发布时间:2018-12-30 17:37
【摘要】:利用上下解方法,考虑一类分数阶非线性微分方程初值问题{x~a(t)=f(t,x(t)),t∈[a,b],a0,x(a)=x_0的可解性,基于Schauder不动点定理,得到了如果存在一对上下解,则在上下解之间必存在一个解其中:f:[a,b]×R→R是一个连续函数;x~(a)(t)表示x在t上的一致α阶导数,α∈[0,1].
[Abstract]:By using the method of upper and lower solutions, the solvability of a class of fractional nonlinear differential equations {xa (t) = f (t0 x (t), t 鈭,
本文编号:2395909
[Abstract]:By using the method of upper and lower solutions, the solvability of a class of fractional nonlinear differential equations {xa (t) = f (t0 x (t), t 鈭,
本文编号:2395909
本文链接:https://www.wllwen.com/kejilunwen/yysx/2395909.html