非对称两参数与三参数Laplace分布的统计分析
[Abstract]:The distribution of stock index yield is always an important problem in financial research. The study of the distribution of stock index yield is not only helpful to understand the inherent law of stock market, but also helps investors to measure the risk correctly, so as to make asset pricing and portfolio selection. It is proposed that the distribution of the return rate of financial assets can be fitted better and the statistical analysis of it has become one of the new and important subjects in financial research. In this paper, the statistical analysis of asymmetric two-parameter Laplace distribution is studied. The method of moment estimation, maximum likelihood and so on is used to estimate the parameters, and it is proved that the results of maximum likelihood estimation and moment estimation are in good agreement with each other. Several estimation methods are synthetically compared with Monte-Carlo simulation. It is concluded that the moment estimation 2 is more accurate than the moment estimation 1. Secondly, this paper studies the statistical analysis and parameter estimation of asymmetric three parameter Laplace distribution. According to the existing literatures, the parameter estimation of asymmetric three-parameter Laplace distribution is obtained by the method of maximum likelihood, but the existence and uniqueness theory of maximum likelihood estimation is not perfect. In this paper, a relatively simple treatment method is given. Several parameter estimation methods are compared by simulation. Then, this paper points out the error of parameter estimation in Zhou Jingyi [23], gives the revised parameter estimate, and tests the goodness of fit. At the same time, the parameter estimation method mentioned above is used to estimate the parameters of the data in this paper. The results of goodness of fit test show that the asymmetric three-parameter Laplace distribution can well describe the peak, thick tail and skewness characteristics of the sample data. Finally, this paper makes an empirical study on the daily and weekly returns of stock indexes in Shanghai and Shenzhen stock markets. The results show that the asymmetric three-parameter Laplace distribution can better fit the daily and weekly returns of Shanghai and Shenzhen stock indexes than the normal distribution.
【学位授予单位】:上海师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O212.1
【参考文献】
相关期刊论文 前10条
1 孙春花;;偏t分布与非对称Laplace分布对我国股市收益率分布拟合研究[J];现代计算机(专业版);2011年26期
2 钟法林;陈荣达;;非对称Laplace分布下外汇收益率的实证分析[J];吉林工商学院学报;2011年04期
3 陈晔;晏小兵;王跃恒;;股票投资组合的实证研究[J];数学理论与应用;2010年01期
4 王建华,王玉玲,柯开明;中国股票收益率的稳定分布拟合与检验[J];武汉理工大学学报;2003年10期
5 王建华,柯开明,王玉玲;非对称拉普拉斯分布在股票收益率中的应用[J];武汉理工大学学报;2004年03期
6 蒋春福;李善民;梁四安;;中国股市收益率分布特征的实证研究[J];数理统计与管理;2007年04期
7 刘建元;刘琼荪;;基于非对称Laplace分布研究VaR[J];统计与决策;2007年18期
8 赵秀娟;张洪水;黎建强;汪寿阳;;一个基于非对称Laplace分布和DEA的证券投资基金评价方法[J];系统工程理论与实践;2007年10期
9 曾五一;刘飞;;中国股指收益率的非对称拉普拉斯分布实证检验[J];统计与信息论坛;2012年12期
10 张帼奋;丁宁;;一种非对称拉普拉斯分布[J];浙江大学学报(理学版);2014年06期
相关硕士学位论文 前2条
1 周静怡;基于非对称Laplace分布的VaR在投资组合中的应用研究[D];武汉科技大学;2013年
2 韩军朝;非对称Laplace分布下的VAR研究[D];重庆大学;2009年
,本文编号:2426267
本文链接:https://www.wllwen.com/kejilunwen/yysx/2426267.html