随机滤波方程数值解法及显微目标跟踪研究
[Abstract]:In multi-target tracking, the random filtering equation can be used to build a model to solve the problem that multi-target state and observation information are disturbed by noise and clutter. The stochastic filtering equation not only plays a very important role in the field of multi-target tracking, but also is closely related to the practical problems in the fields of physics, economics, biodynamics, stochastic control and so on. Therefore, the stochastic filtering equation has important theoretical and practical significance. In this paper, we mainly study two aspects of stochastic filtering equation: the numerical solution of the state process of the continuous-time stochastic filtering equation, and the application of discrete stochastic filtering equation in the tracking of microscopic targets. For the semilinear stochastic filtering equation of state, the exponential Euler method is used to solve it. It is proved that the convergence order of this method is 0.5 when solving the semilinear equation. At the same time, the stochastic analysis theory is used. The asymptotic mean square stability and the mean square stability region of the numerical scheme are studied. Compared with the existing Euler-Maruyama method, the exponential Euler method has better mean square stability. For the stochastic partial differential filtering equation with continuous time, the noise driven by multiplicative Q-Wiener process is considered. The space is discretized by the Galerkin method, and the time is discrete by the random exponential integral method. Moreover, the number of truncation of noise is different from that of Galerkin, and the Lp convergence of the solution is obtained. The numerical method in this paper can use fewer random variables to approximate the noise, which is more efficient than the implicit Euler method. For the target tracking problem of microscopic video sequence, the state evolution equation and measurement equation of microscopic target are established by discrete time stochastic filtering theory, and the state process of microscopic target is estimated by particle probability hypothesis density filtering method. The probability density distribution of the solution state of the filter equation is obtained and an automatic tracking framework is established. In order to improve the accuracy of state estimation of stochastic filtering equation, the microscopic target is modeled by ellipse shape, and the likelihood function model based on deformation matrix is constructed to improve the accuracy of the state estimation of stochastic filtering equation in order to solve the problem of loss of information of shape feature caused by point target. The probability hypothetical density of the estimated target is decomposed in the particle weight space according to the measurement information in the formation part of the state association trajectory of the microscopic target, and a two-level decomposed state association algorithm based on probability hypothesis density rate filtering is constructed. Based on the estimation of the probability density correlation intensity of the target at the adjacent time, the state estimation of the microscopic target is correlated, and the dynamic trajectory of the microscopic target is obtained. A position and azimuth constraint model is proposed to optimize the state association algorithm for the complex scene when the trajectory of micro-objects is crossed.
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:O241.8
【相似文献】
相关期刊论文 前1条
1 苏艳苹;王战伟;;极坐标系下的目标运动模型研究[J];河南科学;2012年02期
相关会议论文 前2条
1 楚威;阎星娥;苏春梅;;仿真系统中飞机目标典型运动模型的研究与实现[A];Proceedings of 14th Chinese Conference on System Simulation Technology & Application(CCSSTA’2012)[C];2012年
2 张晓勇;罗来源;;被动测向声纳目标最近时刻估计[A];第六届全国信号和智能信息处理与应用学术会议论文集[C];2012年
相关博士学位论文 前10条
1 冯肖雪;复杂环境下多传感器目标跟踪关键技术研究[D];西北工业大学;2015年
2 江同洋;基于随机有限集的多目标贝叶斯滤波方法研究[D];浙江大学;2015年
3 史春妹;随机滤波方程数值解法及显微目标跟踪研究[D];哈尔滨工业大学;2015年
4 赵海楠;视觉目标跟踪中表观建模方法研究[D];哈尔滨工业大学;2016年
5 张国亮;红外多光谱多个弱小运动目标的检测与跟踪技术研究[D];哈尔滨工业大学;2016年
6 顾菘;视频目标的跟踪与分割的理论和方法研究[D];电子科技大学;2016年
7 钟金琴;基于视觉的目标跟踪关键技术研究[D];合肥工业大学;2014年
8 赵玲玲;目标跟踪中的粒子滤波与概率假设密度滤波研究[D];哈尔滨工业大学;2011年
9 罗飞腾;目标跟踪的粒子滤波技术研究[D];中国科学技术大学;2010年
10 王勇;基于统计方法的运动目标检测与跟踪技术研究[D];华中科技大学;2009年
相关硕士学位论文 前10条
1 章聪;空中虚拟靶标技术的研究[D];南京理工大学;2015年
2 侯胜彬;基于OpenCV的运动目标检测跟踪的研究[D];电子科技大学;2014年
3 伍俊橙;多目标粒子滤波算法研究[D];电子科技大学;2014年
4 廖良雄;基于随机有限集的弱小目标TBD方法研究[D];西安电子科技大学;2014年
5 段羽浩;基于SE-WORKBENCH的飞机目标雷达信号仿真[D];华中科技大学;2014年
6 陈大龙;基于DSP的目标检测与跟踪系统的研究与设计[D];燕山大学;2016年
7 张儒元;基于PTZ镜头的主动目标跟踪[D];西安电子科技大学;2009年
8 范晶晶;分布式多视角目标跟踪的统计推理方法及实现[D];复旦大学;2011年
9 胡鹏;Kalman滤波在视频目标跟踪中的应用研究[D];重庆大学;2010年
10 张虎;MeanShift粒子滤波算法在视频目标跟踪中的应用研究[D];广西科技大学;2013年
,本文编号:2451211
本文链接:https://www.wllwen.com/kejilunwen/yysx/2451211.html