一类两参数非线性反应扩散方程奇摄动问题的广义解
发布时间:2019-05-10 13:19
【摘要】:利用奇异摄动方法讨论了一类两参数广义奇摄动反应扩散方程问题.首先,在适当的条件下,对两个小参数进行幂级数展开,构造了问题的形式外部解.其次,在区域边界邻近,建立局部坐标系,利用多重尺度变量方法分别构造了问题解的第一、第二边界层校正项.最后,利用合成展开理论,得到了问题广义解的渐近表示式,并用泛函分析不动点原理,估计了渐近展开式的精度.该文得到问题的广义解在重叠区域内具有两个不同厚度的校正函数.它们分别对边界条件起着校正的作用,扩展了问题研究范围,同时还提供了构造这类在重叠区域上不同厚度的校正项的方法,因此具有广泛的研究前景.
[Abstract]:In this paper, a class of singular perturbed reaction-diffusion equations with two parameters is discussed by using the singular perturbation method. Firstly, under appropriate conditions, the power series expansion of two small parameters is carried out, and the formal external solution of the problem is constructed. Secondly, the local coordinate system is established near the regional boundary, and the first and second boundary layer correction terms of the solution are constructed by using the method of multiple scale variables. Finally, by using the synthetic expansion theory, the asymptotic representation of the generalized solution of the problem is obtained, and the accuracy of the asymptotic expansion is estimated by using the fixed point principle of functional analysis. In this paper, we obtain that the generalized solution of the problem has two correction functions of different thickness in the overlapping region. They play an important role in correcting the boundary conditions, extending the scope of the problem, and also providing a method to construct this kind of correction terms with different thickness in the overlapping region, so they have a wide range of research prospects.
【作者单位】: 亳州学院电子与信息工程系;安徽师范大学数学计算机科学学院;
【基金】:国家自然科学基金(11202106) 安徽省教育厅自然科学重点基金(KJ2015A347;KJ2017A702) 安徽省高校优秀青年人才支持计划重点项目(gxyqZ D2016520)~~
【分类号】:O175.29
本文编号:2473677
[Abstract]:In this paper, a class of singular perturbed reaction-diffusion equations with two parameters is discussed by using the singular perturbation method. Firstly, under appropriate conditions, the power series expansion of two small parameters is carried out, and the formal external solution of the problem is constructed. Secondly, the local coordinate system is established near the regional boundary, and the first and second boundary layer correction terms of the solution are constructed by using the method of multiple scale variables. Finally, by using the synthetic expansion theory, the asymptotic representation of the generalized solution of the problem is obtained, and the accuracy of the asymptotic expansion is estimated by using the fixed point principle of functional analysis. In this paper, we obtain that the generalized solution of the problem has two correction functions of different thickness in the overlapping region. They play an important role in correcting the boundary conditions, extending the scope of the problem, and also providing a method to construct this kind of correction terms with different thickness in the overlapping region, so they have a wide range of research prospects.
【作者单位】: 亳州学院电子与信息工程系;安徽师范大学数学计算机科学学院;
【基金】:国家自然科学基金(11202106) 安徽省教育厅自然科学重点基金(KJ2015A347;KJ2017A702) 安徽省高校优秀青年人才支持计划重点项目(gxyqZ D2016520)~~
【分类号】:O175.29
【相似文献】
相关期刊论文 前10条
1 陆云光,胡家信;一类燃烧方程组广义解的存在性[J];科学通报;1990年24期
2 李扬荣,朱波;算子的广义解空间及自动适定性(英文)[J];西南师范大学学报(自然科学版);2001年05期
3 胡劲松,戴更新,张玉华;模糊方程的广义解与模糊数差值及应用[J];青岛大学学报(工程技术版);2002年04期
4 李红军,孙彦平;一类渗流问题数学模型广义解的存在性[J];太原理工大学学报;2003年03期
5 顾永耕,罗佩珠,丁夏畦;强非线性抛物型方程的广义解[J];中国科学(A辑 数学 物理学 天文学 技术科学);1983年07期
6 梁鈵廷;二阶椭园型方程的广义解在其边界最大值点处的性质[J];西南师范学院学报(自然科学版);1984年01期
7 丁崇文;退缩椭园型方程广义解的局部估计[J];福州大学学报(自然科学版);1986年02期
8 钱椿林,陈祖墀;退化拟线性椭圆型方程非平凡广义解[J];中国科学技术大学学报;1986年03期
9 梁学信;;拟线性抛物型方程组广义解的存在性[J];华侨大学学报(自然科学版);1986年04期
10 梁鈵廷;拟线性抛物型方程组广义解的可积性[J];自然杂志;1987年05期
相关硕士学位论文 前2条
1 周娟;一类广义薄膜方程解的存在性[D];吉林大学;2006年
2 刘文秀;广义六阶薄膜方程[D];吉林大学;2010年
,本文编号:2473677
本文链接:https://www.wllwen.com/kejilunwen/yysx/2473677.html