当前位置:主页 > 科技论文 > 数学论文 >

欧拉示性数为负素数平方的双旋转地图

发布时间:2021-02-27 06:08
  地图是从一个图Γ到一个曲面S的嵌入,使得每个S\(V∪E)的连通分支都同胚于一个开圆盘。研究地图的数学理论称为地图论或称拓扑图论,它是组合学的一个分支。依照将点,线,面分别看作支撑曲面上的0维胞腔,1维胞腔,2维胞腔的观点,我们可以看出对于每一个地图,我们都可以定义欧拉示性数,即面的个数加上点的个数减去边的个数,或用拓扑的语言表达,就是0维胞腔个数加上2维胞腔个数减去1维胞腔个数。欧拉示性数或称欧拉公式是经典地图理论的一个著名定理,它联系了多面体,拓扑和球面这些当时的重点研究对象。地图的欧拉示性数是地图非常重要的一个特征,因为从它可以看出许多地图的有趣性质。它是地图论的一个经典研究对象。最近几十年,地图论的内涵大大扩展了,传统的看待地图的观点被扩充成了三种,分别对应拓扑理论,黎曼几何理论以及群论。以群论的观点,具有某种对称性的地图可以由一个群和它的一些陪集表出,故而具有高对称性的地图与群论具有很深的联系,类似的联系同样体现在了高对称性图与群论之间的关系。一个地图M的自同构是旗集上保邻接关系的一个置换。所有这些置换构成一个自同构群,记作Aut(M).Aut(M)在旗集上的作用半正则,如果... 

【文章来源】:哈尔滨工业大学黑龙江省 211工程院校 985工程院校

【文章页数】:66 页

【学位级别】:硕士

【文章目录】:
摘要
ABSTRACT
Notations
Chapter 1 Introduction
    1.1 Background and Significance
        1.1.1 Research Background
        1.1.2 Significance
    1.2 Structure of the Thesis
    1.3 Brief Summary
Chapter 2 Preliminary Knowledge
    2.1 Basic Results in Topology Theory
        2.1.1 Basic Concepts in Topology Theory
        2.1.2 Fundamental Groups
        2.1.3 Manifolds and Surfaces
        2.1.4 Homology Groups and the Classification Theorem of Closed surfaces
    2.2 Graph Theory
        2.2.1 Some Basic Concepts in Graph Theory
        2.2.2 Symmetric Graphs
    2.3 Basic Results in Map Theory
    2.4 Preliminary Knowledge of Group Theory
        2.4.1 Basic Concepts in Group Theory
        2.4.2 Permutation Groups
    2.5 Brief Summary
Chapter 3 Soluble Groups and Projective Special Linear Groups
    3.1 Soluble Groups
    3.2 Classical Simple Groups
    3.3 Brief Summary
Chapter 4 Preliminary Observations
    4.1 Poincare Lemma
    4.2 A Special Case in Bi-rotary Map
    4.3 Brief Summary
Chapter 5 The Classification of bi-rotary maps of negative prime squarecharacteristic
    5.1 p?|G|
    5.2 p‖|G|
2||G|">    5.3 p2||G|
    5.4 Brief Summary
Conclusions
结论
References
Acknowledgements



本文编号:3053805

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/3053805.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户05c32***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com