(2+1)维广义Nizhnik-Novikov-Veselov方程的几种类型新解及其相互作用
发布时间:2021-05-27 13:33
通过函数变换和符号计算系统Mathematica,获得了(2+1)维广义Nizhnik-Novikov-Veselov(N-N-V)方程的几种新结论。步骤1:给出函数变换,将(2+1)维广义N-N-V方程的求解问题转化为几个常微分方程和非线性代数方程组的求解问题。步骤2:借助符号计算系统Mathematica,求出非线性代数方程组的几组解。步骤3:在此基础上,构造(2+1)维广义N-N-V方程的三个任意函数组成的分离变量解和两个任意函数与常微分方程的解组成的分离变量解。步骤4:用符号计算系统Mathematica,分析解的相互作用。
【文章来源】:内蒙古大学学报(自然科学版). 2020,51(06)北大核心
【文章页数】:8 页
【文章目录】:
1 方法与分离变量解
1.1 方法
1.2 分离变量解
1.3 解及其相互作用
2 结论
【参考文献】:
期刊论文
[1]Camassa-Holm-r方程的无穷序列类孤子新解[J]. 套格图桑,伊丽娜. 物理学报. 2014(12)
[2]Exact solutions for nonlinear partial fractional differential equations[J]. Khaled A.Gepreel,Saleh Omran. Chinese Physics B. 2012(11)
[3]非线性发展方程的Riemann theta函数等几种新解[J]. 套格图桑,白玉梅. 物理学报. 2013(10)
[4]具有色散系数的(2+1)维非线性Schrdinger方程的有理解和空间孤子[J]. 马正义,马松华,杨毅. 物理学报. 2012(19)
[5]修正的Korteweg de Vries-正弦Gordon方程的Riemannθ函数解[J]. 王军民. 物理学报. 2012(08)
[6]Infinite Sequence Soliton-Like Exact Solutions of (2 + 1)-Dimensional Breaking Soliton Equation[J]. Taogetusang,Sirendaoerji,李姝敏. Communications in Theoretical Physics. 2011(06)
[7]Using Symbolic Computation to Exactly Solve the Integrable Broer-Kaup Equations in (2+1)-Dimensional Spaces[J]. XIE Fu-Ding;CHEN Jing;LU Zhuo-Sheng Department of Computer Science, Liaoning Normal University, Dalian 116029, China Key Laboratory of Mathematics Mechanization, Institute of Systems Sciences, Academy of Mathematics and Systems Sciences, thc Chinese Academy of Sciences, Beijing 100080, China. Communications in Theoretical Physics. 2005(04)
[8]New Multiple Soliton-like Solutions to(3+1)-Dimensional Burgers Equation with Variable Coefficients[J]. CHEN Huai-Tang~(1,2) ZHANG Hong-Qing~2 1 Department of Applied Mathematics,Dalian University of Technology,Dalian 116024,China 2 Department of Mathematics,Linyi Teachers University,Linyi 276005,China. Communications in Theoretical Physics. 2004(10)
本文编号:3207662
【文章来源】:内蒙古大学学报(自然科学版). 2020,51(06)北大核心
【文章页数】:8 页
【文章目录】:
1 方法与分离变量解
1.1 方法
1.2 分离变量解
1.3 解及其相互作用
2 结论
【参考文献】:
期刊论文
[1]Camassa-Holm-r方程的无穷序列类孤子新解[J]. 套格图桑,伊丽娜. 物理学报. 2014(12)
[2]Exact solutions for nonlinear partial fractional differential equations[J]. Khaled A.Gepreel,Saleh Omran. Chinese Physics B. 2012(11)
[3]非线性发展方程的Riemann theta函数等几种新解[J]. 套格图桑,白玉梅. 物理学报. 2013(10)
[4]具有色散系数的(2+1)维非线性Schrdinger方程的有理解和空间孤子[J]. 马正义,马松华,杨毅. 物理学报. 2012(19)
[5]修正的Korteweg de Vries-正弦Gordon方程的Riemannθ函数解[J]. 王军民. 物理学报. 2012(08)
[6]Infinite Sequence Soliton-Like Exact Solutions of (2 + 1)-Dimensional Breaking Soliton Equation[J]. Taogetusang,Sirendaoerji,李姝敏. Communications in Theoretical Physics. 2011(06)
[7]Using Symbolic Computation to Exactly Solve the Integrable Broer-Kaup Equations in (2+1)-Dimensional Spaces[J]. XIE Fu-Ding;CHEN Jing;LU Zhuo-Sheng Department of Computer Science, Liaoning Normal University, Dalian 116029, China Key Laboratory of Mathematics Mechanization, Institute of Systems Sciences, Academy of Mathematics and Systems Sciences, thc Chinese Academy of Sciences, Beijing 100080, China. Communications in Theoretical Physics. 2005(04)
[8]New Multiple Soliton-like Solutions to(3+1)-Dimensional Burgers Equation with Variable Coefficients[J]. CHEN Huai-Tang~(1,2) ZHANG Hong-Qing~2 1 Department of Applied Mathematics,Dalian University of Technology,Dalian 116024,China 2 Department of Mathematics,Linyi Teachers University,Linyi 276005,China. Communications in Theoretical Physics. 2004(10)
本文编号:3207662
本文链接:https://www.wllwen.com/kejilunwen/yysx/3207662.html