变量核奇异积分和分数次微分加权范不等式
发布时间:2022-07-07 10:10
用T和Dγ(0≤γ≤1)分别表示变量核奇异积分和分数次微分算子.T*和T#分别为T的共轭算子及拟共轭算子.利用球调和多项式展式,本文得到了TDγ-DγT和(T*-T#)Dγ在Bωq,λ(Rn)上的有界性.同时也得到了变量核奇异积分的积T1T2和拟积T1■T2的加权范不等式.
【文章页数】:16 页
【参考文献】:
期刊论文
[1]Boundedness for the Singular Integral with Variable Kernel and Fractional Differentiation on Weighted Morrey Spaces[J]. Chao Xue,Kai Zhu,Yanping Chen. Analysis in Theory and Applications. 2016(03)
[2]Weighted boundedness of some integral operators on weighted λ-central Morrey space[J]. YU Xiao,ZHANG Hui-hui,ZHAO Guo-ping. Applied Mathematics:A Journal of Chinese Universities. 2016(03)
[3]变量核奇异积分与分数次微分的加权Morrey-Herz空间有界性[J]. 陶双平,杨沿奇. 吉林大学学报(理学版). 2016(04)
[4]分数次积分算子交换子在λ-中心Morrey空间上的加权有界性[J]. 赵凯,董鹏娟,邵帅. 山东大学学报(理学版). 2011(12)
本文编号:3656232
【文章页数】:16 页
【参考文献】:
期刊论文
[1]Boundedness for the Singular Integral with Variable Kernel and Fractional Differentiation on Weighted Morrey Spaces[J]. Chao Xue,Kai Zhu,Yanping Chen. Analysis in Theory and Applications. 2016(03)
[2]Weighted boundedness of some integral operators on weighted λ-central Morrey space[J]. YU Xiao,ZHANG Hui-hui,ZHAO Guo-ping. Applied Mathematics:A Journal of Chinese Universities. 2016(03)
[3]变量核奇异积分与分数次微分的加权Morrey-Herz空间有界性[J]. 陶双平,杨沿奇. 吉林大学学报(理学版). 2016(04)
[4]分数次积分算子交换子在λ-中心Morrey空间上的加权有界性[J]. 赵凯,董鹏娟,邵帅. 山东大学学报(理学版). 2011(12)
本文编号:3656232
本文链接:https://www.wllwen.com/kejilunwen/yysx/3656232.html