双模纳米多孔铜的脱合金法制备及其催化性能的研究
[Abstract]:The preparation of nano-porous metal by dealloying method is a simple and effective method to obtain nano-pore structure with high internal surface area, high porosity and uniform pore size. In addition, nano-porous metals not only retain the excellent properties of metal materials such as high thermal conductivity and high conductivity, but also possess the properties (such as high catalytic ability) of bulk metals because of their characteristic size. Therefore, nano-porous metals and dealloying methods have attracted more and more attention in recent years. At present, nano-porous metals (such as nano-porous gold, platinum, palladium, silver, copper, etc.) and nano-porous alloys (such as nano-porous gold platinum, platinum-palladium, etc.) and nano-porous alloys (such as nano-porous gold platinum, platinum-palladium, etc.) can be prepared by dealloying method. Although precious metals (alloys) have excellent properties, the study of active copper has not only scientific research value, but also can provide guidance for the rational utilization of copper resources in industry. In this paper, Al-Cu (NaCl) alloy was prepared by ball milling, cold pressing sintering, and the porous Al-Cu alloy precursor was obtained by removing NaCl template by water bath. Finally, copper / copper oxide with double mode pore structure was obtained by dealloying method. One is to select Al _ (67) Cu _ (33) as the object of study, mix the Al _ (67) Cu _ (33) powder uniformly with the ball milling method, press it into powder billet at room temperature, and then sintered (this paper calls it "cold pressing sintering"), and study the adding amount of NaCl. The effects of sintering temperature and sintering time on the structure and composition of nano-porous copper / copper oxide were investigated. The dealloying products were used to test the catalytic degradation of methyl orange and supercapacitor. Secondly, Al-Cu (NaCl) alloys with different NaCl ratios were prepared by cold pressing and sintering with a low rotating speed grinder, and double mode porous copper / copper oxides were obtained by desalination and desalination. According to the ultrasonic degradation efficiency of nano-porous copper / copper oxide, the optimum salt addition of Al-Cu alloy was determined. Then the supported gold catalyst was prepared by electroless gold plating. Finally, according to the feasibility of the catalytic oxidation of CO and the optimum process parameters, the principle of the supported nanometer gold catalyst for CO oxidation was preliminarily explored. Al-Cu alloy was prepared by cold pressing and sintering. The optimum salt addition in Al-Cu alloy was found to be 5 wt. The reason is that two kinds of pores with different sizes are formed in the dealloyed products. The two channels act differently: the larger channels (1000 nm) accelerate the diffusion, and the small channels (40 nm) increase the specific surface area and provide more chemical reactive sites. This kind of nano-porous material with two-mode structure has better catalytic efficiency than the nano-porous material with only a single pore size range. The general product of dealloying is Cu / Cu _ 2O, but the catalytic efficiency is the highest when the product is Cu / Cu _ 2O / Cu _ 2O. The noble metal au particles were redeposited on the surface of nano-porous copper / copper oxide by displacement. The effect of supported nano-gold on the overall catalytic oxidation of CO on the catalyst was studied. It includes the temperature at which the conversion of CO reaches 100% and the conversion of CO by different catalysts at the same temperature. The principle of catalytic oxidation of CO with supported catalyst is analyzed. It was found that the catalytic efficiency of au nanoparticles supported on nano-porous copper / copper oxides for CO oxidation was much higher than that of unloaded copper nanoparticles (up to 27%). Due to the synergistic effect between au and the support, the catalyst has higher catalytic activity for CO oxidation than the unsupported au product, due to the trace amount of gold deposited on the substrate surface of the dealloyed product.
【学位授予单位】:济南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O643.36
【参考文献】
相关期刊论文 前10条
1 李磊;刘卫;谢雅典;;模板法制备无机纳米材料的研究进展[J];合成化学;2017年01期
2 赵雪;邱平达;姜海静;金振兴;蔡克迪;;超级电容器电极材料研究最新进展[J];电子元件与材料;2015年01期
3 苗晶;;O_3/H_2O_2高级氧化技术处理对硝基苯酚废水的研究[J];广东化工;2014年09期
4 李亚宁;李广忠;张文彦;王建;康新婷;张晗宇;;脱合金法制备纳米多孔泡沫钛合金[J];稀有金属材料与工程;2013年10期
5 李雪爱;王文彪;;浅谈金属腐蚀危害与防护[J];化工管理;2013年12期
6 李作鹏;赵建国;温雅琼;李江;邢宝岩;郭永;;超级电容器电解质研究进展[J];化工进展;2012年08期
7 李亚宁;汤慧萍;王建永;李广忠;康新婷;张文彦;葛渊;杨保军;;脱合金法制备纳米多孔镍材料研究进展[J];中国材料进展;2011年10期
8 杨红梅;曹红翠;;甲醇氧化电催化剂的理论研究[J];广东化工;2011年05期
9 陈静;胡文成;杜凯;董东;张淑洋;张林;;纳米多孔金属的制备方法研究进展[J];材料导报;2010年S2期
10 包月霞;;金属腐蚀的分类和防护方法[J];广东化工;2010年07期
相关博士学位论文 前4条
1 李东玮;纳米多孔金属材料在气相催化方面的应用[D];山东大学;2014年
2 刘召娜;新型纳米结构材料在电化学传感器中的研究与应用[D];山东大学;2012年
3 闫秀玲;纳米多孔金属在电催化及生物催化方面的应用[D];山东大学;2011年
4 印会鸣;脱合金法制备纳米多孔金属和金属氧化物及其催化性能研究[D];山东大学;2010年
相关硕士学位论文 前10条
1 杨明环;均分散NiCu催化剂的制备及其重整性能研究[D];北京化工大学;2014年
2 马琳;纳米多孔铜及其复合物的制备与催化性能研究[D];吉林大学;2014年
3 姜华伟;纳米多孔铜及合金的制备及催化应用的研究[D];济南大学;2014年
4 尹光;基于纳米材料修饰电极的小分子安培型电化学传感器的研究[D];青岛科技大学;2013年
5 李梅;脱合金化方法制备纳米多孔铜[D];济南大学;2012年
6 周全;纳米多孔铜的制备及其形成机理研究[D];兰州理工大学;2012年
7 李栋;熔融富铅渣中金属高温腐蚀行为的研究[D];昆明理工大学;2012年
8 章新民;纳米多孔铜的制备及腐蚀环境对其结构的影响[D];兰州理工大学;2011年
9 王士喜;铝合金的表面处理提高与聚苯硫醚结合强度及其抗腐蚀性的研究[D];苏州大学;2011年
10 高锋;PAN纳米纤维的电纺丝法制备及其结构与性能研究[D];北京化工大学;2007年
,本文编号:2124271
本文链接:https://www.wllwen.com/shekelunwen/minzhuminquanlunwen/2124271.html