当前位置:主页 > 社科论文 > 法治论文 >

静电纺丝法制备复合生物纤维膜及其性能研究

发布时间:2018-08-02 16:38
【摘要】:通过静电纺丝技术制备复合纤维膜应用于临床治疗中已成为现代医疗技术手段发展的热门趋势。本文通过静电纺丝技术制备了不同的复合纤维膜并对其进行了生物和药物传输性能研究。使用聚三亚甲基碳酸酯(PTMC)、明胶(Gt)和改性后的羟基磷灰石纳米粒子(OA-HA)共混,电纺制备复合纤维膜作为模拟人体软骨组织的支架。使用聚乳酸(PLLA)、改性后的羟基磷灰石纳米粒子(OA-HA)和荧光分子罗丹明B(RhB)进行乳液电纺,制备核壳结构纳米纤维用于模拟药物控释。1.使用传统的静电纺丝手段,制备PTMC/Gt、PTMC/Gt/HA和PTMC/Gt/OA-HA复合纤维工程支架。HA作为人骨组成成分之一,其具有诱导骨生长、骨传导等优异性能,但研究发现由于HA纳米粒子间存在相互作用容易发生团聚现象,与高分子材料进行共混电纺时分散不均匀且易于聚集成块,导致纤维形貌受到极大影响,也大大降低了复合纤维支架的理化性能和生物性能。本文对HA纳米粒子进行了油酸表面改性处理,提高其在高分子材料中的分散性和均匀度。利用XRD和FTIR表征手段证明HA经表面改性后仍然保持着原有的晶体结构和化学组成。将OA-HA纳米粒子共混高分子材料进行电纺时,纤维的表面形貌得到极大改善,纤维直径均一,表面均匀分布着OA-HA纳米粒子,无块状团聚物。2.通过对上述三种复合纤维膜进行理化性能测试,可知,HA纳米粒子和OA-HA纳米粒子的加入均可提高PTMC/Gt复合纤维膜的亲水性。PTMC/Gt/OA-HA复合纤维膜表现出更优异的力学性能,且复合纤维中各组分仍保持着各自原有的化学性质,在复合纤维中发挥着各自优异的理化性能。对上述三种复合纤维膜进行生物测试,PTMC/Gt复合纤维膜在初期(第一天)表现出较好的细胞粘附性,随着细胞培养时间的延长,PTMC/Gt/HA和PTMC/Gt/OA-HA复合纤维膜则表现出促进细胞增殖的优异性能。从长期组织修复的角度来看,PTMC/Gt/HA和PTMC/Gt/OA-HA复合纤维膜具有更为优异的生物性能。3.分别采取传统电纺和乳液电纺制备了载有荧光分子RhB的PLLA纤维膜。通过激光共聚焦显微镜观测了荧光分子RhB在两种纤维中的分布,实验表明在传统电纺制备的纤维中RhB分布在纤维的内部和表面,而在乳液电纺制备的纤维中RhB仅分布在纤维的内部,形成核层部分。说明通过乳液电纺可以制备核壳结构纤维,并且通过激光共聚焦显微镜图像可以看出每个纤维都呈现为核壳结构,良率极高。4.通过乳液电纺,在原有的RhB-PLLA核壳结构纤维的基础上,在壳层部分加入不同含量的OA-HA纳米粒子。通过力学性能和接触角表征,加入OA-HA纳米粒子有助于提升RhB-PLLA纤维膜的力学性能和亲水性能。更重要的是,OA-HA纳米粒子降解速度要高于PLLA的降解速度,核层OA-HA纳米粒子的降解会导致核壳结构纤维壳层出现空缺,RhB分子通过空缺进行释放,并且随着壳层OA-HA纳米粒子含量的增加,RhB分子的释放速率加快。这一现象表明可以通过控制壳层OA-HA纳米粒子的加入量控制RhB分子的释放速率,进而实现药物的控制释放。
[Abstract]:The application of electrospun fiber to the preparation of composite fiber membranes has become a hot trend in the development of modern medical technology. In this paper, different composite fiber membranes were prepared by electrostatic spinning technology and the biological and drug transport properties were studied. Poly Sanya methyl carbonate (PTMC), gelatin (Gt) and modification were used. Hydroxyapatite nanoparticles (OA-HA) were blended and electrospun composite fiber membranes were used as scaffolds to simulate human cartilage tissue. By using poly (PLLA), modified hydroxyapatite nanoparticles (OA-HA) and fluorescent molecule Luo Danming B (RhB) were electrospun by emulsion. The preparation of nuclear shell structure nanofibers was used to simulate the use of drug controlled release.1.. PTMC/Gt, PTMC/Gt/HA and PTMC/Gt/OA-HA composite fiber engineering scaffold.HA is one of the components of human bone, which has excellent performance in inducing bone growth and bone conduction. However, it is found that the aggregation phenomenon is easy to occur because of the interaction between HA nanoparticles, and it is dispersed when blended with polymer materials. The morphology of the fiber was greatly affected and the physical and chemical properties and biological properties of the composite fiber scaffold were greatly reduced. The surface modification of oleic acid was carried out in this paper to improve the dispersion and uniformity of the HA nanoparticles in the polymer materials. The XRD and FTIR characterization methods were used to prove that the surface of HA was modified by surface modification. While the original crystal structure and chemical composition are still maintained, the surface morphology of the fiber is greatly improved when the OA-HA nanoparticle blend polymer materials are electrospun. The fiber diameter is uniform and the OA-HA nanoparticles are evenly distributed on the surface. No massive aggregate.2. has been tested for the physical and chemical properties of the three kinds of composite fiber membranes, and HA The addition of nano particles and OA-HA nanoparticles can improve the hydrophilic.PTMC/Gt/OA-HA composite fiber membrane of the PTMC/Gt composite fiber membrane with more excellent mechanical properties, and the components in the composite fibers still maintain their original chemical properties, and their excellent physical and chemical properties are played in the composite fibers. The three kinds of composite fibers are used in the composite fibers. The membrane was tested by biological test. The PTMC/Gt composite fiber membrane showed good cell adhesion at the first day (the first day). With the prolongation of cell culture time, the PTMC/Gt/HA and PTMC/Gt/OA-HA composite fibrous membrane showed excellent performance in promoting cell proliferation. From the point of view of long-term tissue repair, the composite fiber membrane of PTMC/Gt/HA and PTMC/Gt/OA-HA The PLLA fiber membrane containing fluorescent molecule RhB was prepared by traditional electrospun and emulsion electrospun with more excellent biological properties.3.. The distribution of RhB in two fibers was observed by laser confocal microscopy. The experiment showed that in the fibers prepared by the traditional electrospun fiber, RhB was distributed inside and on the surface of the fiber, and the emulsion was in the emulsion. RhB in the fibers prepared by electrospun is only distributed inside the fiber and forms the core layer. It shows that the core shell fiber can be prepared by the emulsion electrospun, and the nuclear shell structure is shown by the laser confocal microscope image. The high rate of high rate.4. is electrospun by emulsion and the base of the original RhB-PLLA core shell structure fiber. On the base, OA-HA nanoparticles with different content are added to the shell. Through the mechanical properties and contact angle, the addition of OA-HA nanoparticles helps to improve the mechanical and hydrophilic properties of the RhB-PLLA fiber membrane. More importantly, the degradation rate of the OA-HA nanoparticles is higher than that of the PLLA, and the degradation of the OA-HA nanoparticles in the nuclear layer will lead to the degradation of the nanoparticles. There is vacancy in the shell structure of the shell structure, and the RhB molecules are released through the vacancy, and the release rate of the RhB molecules is accelerated with the increase of the content of the shell OA-HA nanoparticles. This phenomenon indicates that the release rate of the RhB molecules can be controlled by controlling the addition of the shell layer OA-HA nanoparticles, and the controlled release of the drug can be realized.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ340.64

【相似文献】

相关期刊论文 前10条

1 于翠英;;空心纤维膜的应用[J];广东化纤技术通讯;1980年02期

2 郑鑫;廖桂英;仰大勇;解孝林;;有序电纺纤维膜的制备方法及在组织工程中的应用进展[J];高分子材料科学与工程;2011年08期

3 范文娟;;光催化剂载体——羧基氟碳共聚物纤维膜的制备及耐光降解性能研究[J];表面技术;2013年05期

4 殷保璞,靳向煜,顾金芝;非织造纤维膜的离子分离特性研究[J];东华大学学报(自然科学版);2001年06期

5 涂怡然;刘家海;;纤维膜系统中油泥沉积物组成分析[J];炼油技术与工程;2009年07期

6 黄连清;可降解的草纤维膜生产工艺及其特点研究初报[J];甘肃农业大学学报;1995年04期

7 史铁钧;翟林峰;周玉波;;尼龙66电纺纳米纤维膜的纤维分散形态和结晶性能[J];高分子材料科学与工程;2007年02期

8 李涛子;范怡平;顾春来;卢春喜;时铭显;;纤维膜萃取分离技术的工业应用[J];炼油技术与工程;2007年05期

9 吕升;KEG智能型纤维膜[J];纺织信息周刊;2004年23期

10 黄博能;王娇娜;李从举;;可调制润湿性和力学性能的电纺纤维膜的制备与性能研究[J];高分子学报;2012年09期

相关会议论文 前10条

1 丁雅梅;王秀奎;郭万春;袁晓燕;;明胶/低晶态磷灰石复合纤维膜的研究[A];中国复合材料学术研讨会论文集[C];2005年

2 丁雅梅;王秀奎;郭万春;袁晓燕*;;明胶/低晶态磷灰石复合纤维膜的研究[A];全国首届青年复合材料学术交流会论文集[C];2007年

3 韩凤选;贾潇凌;赵瑾;赵蕴慧;樊瑜波;袁晓燕;;利用明胶促进细胞向电纺纤维膜内部生长的研究[A];2013年全国高分子学术论文报告会论文摘要集——主题I:生物高分子与天然高分子[C];2013年

4 陈鹏程;黄小军;徐志康;;纳米纤维膜固定化酶生物反应器的构建及其应用研究[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年

5 张红;袁晓燕;;乳芯电纺纤维膜对BSA的释放研究[A];中国化学会第27届学术年会第04分会场摘要集[C];2010年

6 陆莹;吴志红;李沐芳;王栋;;具有重金属离子吸附及抗非特异性蛋白吸附功能的纳米纤维膜制备及其应用[A];2013年全国高分子学术论文报告会论文摘要集——主题K:先进纤维[C];2013年

7 李永健;王娇娜;李从举;;载银离子纳米纤维膜的制备与对噻吩吸附性能的研究[A];中国化学会第28届学术年会第4分会场摘要集[C];2012年

8 王栋;李沐芳;赵青华;;具有光催化自清洁功能的聚合物纳米纤维膜[A];2012年全国高分子材料科学与工程研讨会学术论文集(上册)[C];2012年

9 钟鹭斌;苑志华;LiuQing;尹君;程晓夏;郑煜铭;;负载铁-锰纳米纤维膜的制备及其在水处理中的应用[A];中国化学会第29届学术年会摘要集——第31分会:静电纺丝技术与纳米纤维[C];2014年

10 张腾;吴健;徐志康;;功能化聚酰亚胺电纺纤维膜的制备与HRP固定化研究[A];2013年全国高分子学术论文报告会论文摘要集——主题F:功能高分子[C];2013年

相关重要报纸文章 前2条

1 王景春 唐贵炎;兴邦将批量生产纳米纤维膜[N];中国化工报;2010年

2 本报记者 温维健;低头拉车 抬头看路[N];中国纺织报;2014年

相关博士学位论文 前8条

1 毛雪;ZrO_2基纳米纤维膜的柔性机制及其应用研究[D];东华大学;2016年

2 陈正坚;明胶/聚己内酯基电纺纤维膜的制备及其性能与应用研究[D];浙江大学;2012年

3 王耀明;高温烟气净化用孔梯度陶瓷纤维膜的设计、制备及特性[D];武汉理工大学;2007年

4 刘雷艮;静电纺聚砜纤维膜的改性处理及对染料的过滤性能研究[D];苏州大学;2013年

5 周伟涛;丝素蛋白复合纳米纤维膜的制备及在污水中铜离子的吸附研究[D];江南大学;2011年

6 王建强;功能性聚合物纳米纤维膜的制备及应用[D];北京化工大学;2013年

7 车爱馥;丙烯腈共聚物纳米纤维膜的表面功能化及其识别性能研究[D];浙江大学;2009年

8 费燕娜;聚乳酸/茶多酚复合纳米纤维膜的制备及性能研究[D];江南大学;2013年

相关硕士学位论文 前10条

1 邰思翰;载细菌电纺纤维膜的制备及评价[D];西南交通大学;2015年

2 刘威;静电纺丝法制备纳米纤维膜及其纤溶功能化应用研究[D];苏州大学;2015年

3 袁利娟;静电纺丝制备聚酰亚胺交联纳米纤维膜及其作为锂电隔膜的应用研究[D];北京化工大学;2015年

4 牟洪伟;静电纺丝法制备聚酰亚胺/二氧化钛复合纳米纤维膜[D];北京化工大学;2015年

5 何雪飞;乳清浓缩蛋白纤维膜的制备及其性能研究[D];东北农业大学;2015年

6 洪菲菲;磁响应柔性SiO_2纳米纤维膜的制备及液相分离研究[D];东华大学;2016年

7 马浚程;改性纤维素纳米纤维膜的制备及其溶菌酶吸附性能研究[D];东华大学;2016年

8 杨印景;碳管增强聚丙烯腈/尼龙6复合纤维膜在空气过滤中的应用[D];东华大学;2016年

9 刘波文;尼龙56纳米蛛网纤维膜的可控制备及其空气过滤应用研究[D];东华大学;2016年

10 张仁忠;多级介孔TiO_2纳米纤维膜的制备及其光催化降解性能研究[D];东华大学;2016年



本文编号:2160038

资料下载
论文发表

本文链接:https://www.wllwen.com/shekelunwen/minzhuminquanlunwen/2160038.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户df6ba***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com