吉林省7种常见室内植物固碳释氧、释水吸热能力研究
本文选题:室内植物 切入点:季节 出处:《北华大学》2017年硕士论文 论文类型:学位论文
【摘要】:在不同的室内环境中,室内植物通过光合作用、蒸腾作用能有效发挥其最大生态效益,合理的选择功能性最优植物也是室内环境改善有效途径之一。本文以吉林省常见的7种室内绿色植物白鹤芋(Spathiphyllum kochii Engl.K.Krause)、常春藤(Hedera nepalensis var.sinensis(Tobl.)Rehd)、圆叶椒草(豆瓣绿)(Peperomia obtusifolia A.Dietr)、马拉巴栗(发财树)(Pachira macrocarpa Walp.)、富贵竹(Dracaena sanderiana Sander)、孔雀竹芋(Calathea makoyana E.Morr)、栀子(Gardenia jasminoides Ellis)为实验材料,应用单因素分析法和聚类分析法,对不同植物在不同季节的固碳释氧、释水吸热量结果进行比较分析,以期为调节室内环境质量选择最佳植物。结果表明:1.不同植物间的固碳释氧能力、释水吸热能力不同,即便是同种植物在不同季节的固碳释氧能力、蒸腾释水吸热能力也存在差异。因此,在不同室内空间的植物设计中,选择适宜的功能植物具有重要意义。合理配置功能植物是改善室内环境的重要途径之一。2.固碳释氧能力:针对供试植物实验研究表明,在室内栽培条件下固碳释氧能力最强的是栀子和马拉巴栗,年均固碳量高于1.5g.m~(-2).d~(-1)、年均释氧量高1.2g.m~(-2).d~(-1);白鹤芋、富贵竹固碳释氧能力中等,年均固碳量1.02g.m~(-2).d~(-1)~1.03g.m~(-2).d~(-1)、年均释氧量0.74g.m~(-2).d~(-1)~0.75g.m~(-2).d~(-1);孔雀竹芋固碳释氧能力最弱,年均固碳量在0.75g.m~(-2).d~(-1)以下、释氧量在0.54g.m~(-2).d~(-1)以下。所有供试植物表现一致的是:冬季固碳释氧量最高。栀子、马拉巴栗固碳释氧最低的季节均是夏季,冬季较夏季固碳量分别高出1.84倍和3.25倍,释氧量分别高出1.84倍和3.26倍;孔雀竹芋固碳释氧最低的季节是春季,冬季较春季固碳量、释氧量分别高出6.96和7.31倍。3.释水吸热能力:通过相关实验研究表明,栀子和马拉巴栗的释水吸热能力依然最强,此外白鹤芋能力也相对较强,年均释水量超过1560g.m~(-2).d~(-1)以上、年吸热量超过3800KJ.m~(-2).d~(-1)以上;富贵竹的释水吸热能力较中等,年均释水量在921.44g.m~(-2).d~(-1)、年均吸热量2250.55KJ.m~(-2).d~(-1);常春藤、圆叶椒草、孔雀竹芋释水吸热能力较弱,年均释水量在350g.m~(-2).d~(-1)~620g.m~(-2).d~(-1)、年均吸热量860KJ.m~(-2).d~(-1)~1515KJ.m~(-2).d~(-1)。供试植物在冬季释水吸热量较低,在春夏季相对较高。4.通过对影响植物光合、蒸腾作用的主要生理指标相关性分析表明,不同季节所有供试植物光合速率与蒸腾速率之间均存在显著或极显著关系。而气孔导度与两者之间亦存在显著相关关系,是影响光合、蒸腾速率的主要因素。
[Abstract]:In different indoor environments, indoor plants can effectively exert their maximum ecological benefits through photosynthesis and transpiration. It is also one of the effective ways to improve the indoor environment by reasonably selecting the best plants of function. In this paper, seven common indoor green plants, Spathiphyllum kochii Engl.K. Krauseus, Hedera nepalensis var. sinensis Tobl.Rehdr, Peperomia obtusifolia A. Dietrus, Malabar. Chestnut (Pachira macrocarpa Walp.Li, Dracaena sanderiana Sandera, Calathea makoyana E. Morrus, Gardenia jasminoides Ellis. jasminoides) were used as experimental materials. Single factor analysis and cluster analysis were used to compare and analyze the results of carbon sequestration and heat absorption of different plants in different seasons. The results showed that the ability of carbon sequestration and heat release was different among different plants, even the carbon sequestration and oxygen release ability of the same plant in different seasons. There are also differences in the heat absorption capacity of transpiration and water release. Therefore, in the plant design of different indoor spaces, It is of great significance to select suitable functional plants. Rational allocation of functional plants is one of the important ways to improve the indoor environment. 2. The ability of carbon sequestration and oxygen release. Under the condition of indoor cultivation, Gardenia jasminoides and Malaba chestnut had the strongest carbon sequestration capacity, the average annual carbon sequestration capacity was higher than 1.5 g 路m ~ (-1) ~ (-1), the annual oxygen release capacity was 1.2 g 路m ~ (-1) ~ (-2) C ~ (2) C ~ (-1), and the ability of white crane taro was medium. The average annual carbon sequestration capacity is 1.02g 路m ~ (-1) ~ (-1). The average annual oxygen release is 0.74 g 路m ~ (-1) ~ (-2). The average annual oxygen release is 0.74 g 路m ~ (-1) ~ (-2) 路m ~ (-1). The ability of carbon sequestration is the weakest, the annual carbon sequestration capacity is below 0.75 g 路m ~ (-1) and the oxygen release is below 0.54 g 路m ~ (-2) 路d ~ (-1). All the tested plants have the same ability of carbon sequestration and oxygen release in winter, which is the highest in winter, and the highest in winter, and the highest in winter, the highest carbon sequestration is observed in all the tested plants, and the highest carbon sequestration capacity is found in winter, and the average annual carbon sequestration capacity is less than 0.75 g 路m ~ (-1) and 0.54 g 路m ~ (-1) 路d ~ (-1). The lowest season of carbon and oxygen release from Malaba is summer, and the carbon sequestration in winter is 1.84 times and 3.25 times higher than that in summer, and the oxygen release is 1.84 and 3.26 times higher than that in summer, respectively, while the lowest season for carbon and oxygen release in Peacock is spring, and the carbon sequestration in winter is higher than that in spring. The oxygen release capacity was 6.96 and 7.31 times higher than that of 6.96 and 7.31 times respectively. The experimental results showed that Gardenia jasminoides and Malaba chestnut still had the strongest water release and heat absorption capacity, and that the average annual water release of Gardenia jasminoides var. jasminoides was higher than 1560g / kg / year. The annual endothermic capacity of Phyllostachys nobilis is more than 3800KJ. mechnian.dc-1); the average annual water release capacity of Phyllostachys nobilis is 921.44 g / m ~ (-1). The annual heat absorption capacity is 2250.55 KJ 路mGG ~ (-2) 路d-1 ~ (-1); the annual heat absorption capacity of Phyllostachys lucifera is low, and the water and heat absorption capacity of phyllostachys lucifera is weak, and the annual heat absorption capacity of Phyllostachys oleifera is relatively low. The average annual water release is at 350 g 路m ~ (-1) ~ (-1) ~ 620g 路m ~ (-1) ~ (-1) ~ 620g 路m ~ (-1) ~ (-1), and the average annual heat absorption is 860KJ 路m ~ (-1). The correlation analysis of the main physiological indexes of the effects on photosynthesis and transpiration shows that the water and heat absorption of the tested plants is low in winter and relatively high in spring and summer, and the correlation analysis of the main physiological indexes influencing the photosynthesis and transpiration of the plants shows that the main physiological indexes of the plants in the experiment are lower in winter and higher in the spring and summer. The results show that the main physiological indexes affecting the photosynthesis and transpiration of the plants are as follows:. There was a significant or extremely significant relationship between photosynthesis rate and transpiration rate in all the tested plants in different seasons, and there was also a significant correlation between stomatal conductance and transpiration rate, which was the main factor affecting photosynthesis and transpiration rate.
【学位授予单位】:北华大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S688
【相似文献】
相关期刊论文 前10条
1 孟占功;李华娟;张兴兴;;长春市6种绿化树种固碳释氧价值核算[J];吉林蔬菜;2012年08期
2 王巨斌;沈阳市街路绿化固碳释氧效益分析[J];辽宁师专学报(自然科学版);2004年03期
3 韩焕金;城市绿化植物的固碳释氧效应[J];东北林业大学学报;2005年05期
4 郭阿君;岳桦;王志英;;不同室内光环境对植物固碳释氧的影响[J];林业勘查设计;2007年03期
5 徐玮玮;李晓储;汪成忠;何小弟;陆建飞;黄利斌;;扬州古运河风光带绿地树种固碳释氧效应初步研究[J];浙江林学院学报;2007年05期
6 刘大卫;殷鸣放;杨森;刘云茹;赵林;吴建军;王洪林;;辽宁东部山区森林固碳释氧量计量分析[J];林业科技开发;2008年05期
7 唐万鹏;史玉虎;潘磊;王晓荣;王珠娜;;湖北省天然林保护工程森林固碳释氧效益初探[J];湖北林业科技;2011年04期
8 吴浩;王志杰;韦明月;王大伟;;淅川县国家重点公益林固碳释氧功能价值测算及分析[J];河北农业科学;2012年04期
9 董延梅;章银柯;郭超;周丽丽;;杭州西湖风景名胜区10种园林树种固碳释氧效益研究[J];西北林学院学报;2013年04期
10 饶日光;张琳;王照利;申永涛;;陕西省退耕还林工程固碳释氧服务功能评价[J];西北林学院学报;2013年04期
相关会议论文 前6条
1 燕楠;王冬梅;宁月胜;史常青;;退耕还林固碳释氧效应初探[A];中国北方退耕还林工程建设管理与效益评价实践[C];2008年
2 范怡雯;喻理飞;;草海流域优势树种碳酸酐酶与固碳释氧关系研究[A];第十五届中国科协年会第19分会场:中国西部生态林业和民生林业与科技创新学术研讨会论文集[C];2013年
3 代巍;郭小平;王晓宁;彭海燕;史晓丽;;G101北京段公路绿化的固碳释氧研究[A];全国公路生态绿化理论与技术研讨会论文集[C];2009年
4 肖建武;康文星;尹少华;谢欣荣;;长沙市城市森林固碳释氧功能价值评估[A];《两型社会建设与湖南管理创新》论坛论文集[C];2008年
5 王丽勉;秦俊;胡永红;高凯;黄娟;;上海地区151种绿化植物固碳释氧能力的研究[A];2007中国植物生理学会全国学术会议论文摘要汇编[C];2007年
6 王春红;邓华锋;;森林生态系统服务功能及其价值评价的研究[A];第十三届中国科协年会第16分会场-沿海生态建设与城乡人居环境学术研讨会论文集[C];2011年
相关重要报纸文章 前4条
1 本报记者 朱邪;我省森林生态服务功能价值年超4000亿元[N];贵州日报;2012年
2 通讯员 黄钰 汪杰;贵州森林生态服务功能价值逾4000亿元[N];中国绿色时报;2012年
3 记者 李凌翌;我市森林生态服务价值每年达256亿元[N];成都日报;2010年
4 本报记者 朱邪;4275亿! 重新认识森林价值[N];贵州日报;2012年
相关硕士学位论文 前10条
1 刘瑞文;树冠微环境与固碳释氧和增湿降温生态效益的研究[D];吉林农业大学;2015年
2 吴腾飞;南县森林生态系统服务功能价值评估[D];中南林业科技大学;2015年
3 罗蔚生;广西大瑶山国家级自然保护区森林生态服务功能评估及补偿问题探讨[D];广西大学;2014年
4 王芳;基于叶面积指数的群落固碳释氧和降温增湿功能研究[D];华中农业大学;2013年
5 贾婷婷;吉林省7种常见室内植物固碳释氧、释水吸热能力研究[D];北华大学;2017年
6 杨清;煤矿复垦区绿化树种固碳释氧、降温增湿效应研究[D];安徽理工大学;2013年
7 田卓林;大连市森林生态系统服务功能价值评价[D];辽宁师范大学;2010年
8 教勇;长沙市重点公益林规划及生态服务功能价值评价[D];中南林业科技大学;2013年
9 汪成忠;上海八种园林树木生态功能比较研究[D];东北林业大学;2009年
10 代巍;G101北京段公路绿化的温湿度调节及固碳释氧研究[D];北京林业大学;2009年
,本文编号:1622190
本文链接:https://www.wllwen.com/shoufeilunwen/zaizhiyanjiusheng/1622190.html