当前位置:主页 > 医学论文 > 传染病论文 >

支持向量机模型的登革热时空扩散预测

发布时间:2019-05-27 14:36
【摘要】:针对登革热传播速度及破坏力呈显著上升趋势,但其预测存在一定难度的现状,该文将GIS与支持向量机模型相结合,预测广州市主城区2014年9月登革热时空扩散趋势。在综合分析登革热空间分布模式的基础上,将格网区域周边8个Queen邻域作为影响因子,建立基于支持向量机的登革热时空扩散模型的方法。研究表明,支持向量机模型在样本训练阶段和预测阶段都具有良好的模拟精度,均方根误差分别为1.58、3.72。支持向量机能有效预测登革热时空扩散趋势,能够描述登革热时空扩散过程中复杂的非线性关系,综合预测正确率达81.3%。该模型同样适用于其他疾病时空预测。
[Abstract]:In view of the fact that the propagation speed and destructive power of dengue fever show a significant upward trend, but the prediction is difficult to some extent, this paper combines GIS with support vector machine model to predict the temporal and spatial diffusion trend of dengue fever in the main urban area of Guangzhou in September 2014. Based on the comprehensive analysis of the spatial distribution model of dengue fever, the spatial and temporal diffusion model of dengue fever based on support vector machine (SVM) was established by taking eight Queen neighborhoods around the grid area as influencing factors. The results show that the support vector machine model has good simulation accuracy in the sample training stage and the prediction stage, and the root mean square error is 1.58 and 3.72, respectively. Support vector machine can effectively predict the temporal and spatial diffusion trend of dengue fever, and can describe the complex nonlinear relationship in the process of dengue fever diffusion. The correct rate of comprehensive prediction is 81.3%. The model is also suitable for temporal and spatial prediction of other diseases.
【作者单位】: 华南师范大学地理科学学院;
【分类号】:R512.8

【相似文献】

相关期刊论文 前10条

1 张向东,毕韶丹,关宏宇;拮抗药化合物活性的支持向量机研究[J];辽宁大学学报(自然科学版);2005年03期

2 罗万春;;基于支持向量机的凝血功能诊断模型[J];数学的实践与认识;2013年06期

3 谢洪波,王志中,黄海;表面肌电的支持向量机分类[J];北京生物医学工程;2004年02期

4 陆强;冯敏;马华;张西学;;模糊聚类支持向量机在步态分类中的应用[J];中国组织工程研究与临床康复;2011年09期

5 史鑫;罗述谦;;支持向量机在医学图像分割中的应用[J];北京生物医学工程;2007年03期

6 李磊;黄水平;;支持向量机原理及其在医学分类中的应用[J];中国卫生统计;2009年01期

7 郑莉丽;李晓强;李福凤;闫西平;王忆勤;王真真;;基于支持向量机的中医望诊唇色自动分类[J];生物医学工程学杂志;2011年01期

8 王浩军,郑崇勋,李映,朱华锋,闫相国;支持向量机在血细胞分类中的应用[J];生物医学工程学杂志;2003年03期

9 周舒冬;张磊;叶小华;杨云升;;支持向量机技术在疾病预后中的应用和比较[J];数理医药学杂志;2007年06期

10 胡康达;符红光;孔祥振;;分级聚类支持向量机在中医舌像分类中的应用[J];计算机应用;2010年S2期

相关会议论文 前10条

1 余乐安;姚潇;;基于中心化支持向量机的信用风险评估模型[A];第六届(2011)中国管理学年会——商务智能分会场论文集[C];2011年

2 刘希玉;徐志敏;段会川;;基于支持向量机的创新分类器[A];山东省计算机学会2005年信息技术与信息化研讨会论文集(一)[C];2005年

3 史晓涛;刘建丽;骆玉荣;;一种抗噪音的支持向量机学习方法[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(下册)[C];2008年

4 何琴淑;刘信恩;肖世富;;基于支持向量机的系统辨识方法研究及应用[A];中国力学大会——2013论文摘要集[C];2013年

5 刘骏;;基于支持向量机方法的衢州降雪模型[A];第五届长三角气象科技论坛论文集[C];2008年

6 王婷;胡秀珍;;基于组合向量的支持向量机方法预测膜蛋白类型[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年

7 赵晶;高隽;张旭东;谢昭;;支持向量机综述[A];全国第十五届计算机科学与技术应用学术会议论文集[C];2003年

8 周星宇;王思元;;智能数学与支持向量机[A];2005年中国智能自动化会议论文集[C];2005年

9 颜根廷;马广富;朱良宽;宋斌;;一种鲁棒支持向量机算法[A];2006中国控制与决策学术年会论文集[C];2006年

10 侯澍e,

本文编号:2486227


资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/chuanranbingxuelunwen/2486227.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户0fde2***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com