京海黄鸡腿肌全基因组甲基化和转录组分析研究
本文选题:京海黄鸡 + 早期生长 ; 参考:《扬州大学》2017年博士论文
【摘要】:肉鸡早期生长发育规律尤其是生长拐点影响着肉鸡最佳上市时间和屠宰体重,进而影响着肉鸡产业的经济效益,而目前关于肉鸡早期生长发育规律遗传机理的研究却很少。DNA甲基化作为最常见的表观遗传修饰方式之一,在转录及转录后水平调控基因的表达,进而影响动物的生长发育,目前关于优质肉鸡早期生长过程中表观遗传调控机理的研究报道很少。因此本研究选取京海黄鸡生长拐点前(缓慢生长阶段)、生长拐点及拐点后(上市阶段),即对应4、12和16周龄三个特殊时间点的腿肌组织,采用转录组测序RNA-seq和全基因组甲基化测序BS-seq技术相结合,探索京海黄鸡早期生长过程中全基因组范围内基因表达水平的变化、DNA甲基化状态的变化以及DNA甲基对生长相关基因表达的调控机制,为揭示京海黄鸡生长发育规律的遗传机理以及优质肉鸡腿部肌纤维发育机制提供参考依据。主要研究结果如下:1.利用三种非线性模型对京海黄鸡0~25周龄生长发育数据进行生长曲线拟合,发现京海黄鸡生长曲线接近“S”型,且Logistic模型下计算的京海黄鸡生长拐点为11.48周龄,拐点体重为896.68g。2.对不同生长阶段京海黄鸡腿肌样本共9个(各阶段3个重复),进行转录组测序,每个样本最终获得了 8Gb(gigabases)以上的可用数据,共检测出15699个在腿肌中表达的基因,其中有14432个基因在4、12和16周龄中共同表达,而分别检测出59、724和633个基因在4周龄与12周龄(M4WvsM12W)、4周龄与16周龄(M4WvsM16W)以及12周龄与16周龄(M12WvsM16W)三组比较中差异表达(FC≥2,FDR0.05),在这些差异表达的基因中,发现了 MYOD1、FBX032、CEBPB和FOX034个转录因子,以及鸡生长轴中的一些基因,如 GH、IGF2BP1、IGF2BP2、IGF2BP3、IGFBP3、IGFBP5 和 IGFBP7等生长相关的候选基因。3.对差异表达的基因进行GO和Pathway功能富集分析,发现差异表达基因显著富集于细胞增殖和分化、细胞迁移、细胞粘着和连接、细胞生长、骨骼肌肌纤维发育、肌肉器官发育和骨骼肌细胞分化等生长发育相关的生物过程(P0.05),涉及到的基因包括MYOD1,IGFBP3,IGFBP5、1GFBP7和MYH10等已知的与生长发育相关的基因。在显著富集的信号通路中(P0.05),发现了 5个与生长发育相关的信号通路,分别为粘着斑、细胞外基质受体互作、胰岛素信号通路、紧密连接和肌动蛋白细胞骨架调节,共有42个基因包含在这5个通路中,包括FGF2、FGF16、FN1、MYH10、MAPK9等,推测这些通路及基因在京海黄鸡早期的生长和腿肌发育过程中发挥着重要的调控作用。4.本研究通过BS-seq技术构建了京海黄鸡腿肌全基因组DNA甲基化图谱,并揭示了其DNA甲基化特征:mCpG为京海黄鸡基因组DNA甲基化主要方式,极少部分DNA甲基化发生在CHG和CHH序列上;CG类型甲基化位点侧翼序列不存在碱基偏好性,而非CG类型甲基化胞嘧啶位点的下游碱基以腺嘌呤(A)出现最多;CG位点甲基化水平在TSS附近显著下降、基因本体区显著升高,而非CG位点甲基化水平在TSS附近显著升高、基因本体区内显著下降;不同功能元件的甲基化水平分析中,启动子区和CpG岛的甲基化水平最低,CDS区和外显子的甲基化水平最高;各条染色体上的DNA甲基化水平及甲基化密度存在较大变化。5.不同生长阶段京海黄鸡甲基化组比较(M4W vs M12W、M4W vs M16W和M12W vsM16W),分别检测出2141、2260和1550个差异甲基化区域(DMR),分别涉及1022、1055和797个差异甲基化基因,其中分别有263、239和229个基因的差异甲基化发生在了启动子区。6.对启动子区差异甲基化基因进行功能富集分析,发现这些差异甲基化基因显著富集于转化生长因子β受体信号通路调控、细胞迁移和细胞增殖正调控、细胞分化和细胞增殖调控、骨骼系统发育、肌动蛋白细胞骨架组织、细胞黏附等生长相关的生物过程(P0.05),以及转化生长因子β信号通路、细胞周期、溶酶体、核糖体、细胞黏附分子5个生长发育相关的信号通路(P0.05),涉及到的基因包括BMP4和SMAD4等生长发育相关基因。7.将甲基化数据与转录组数据进行整合分析,发现大部分基因启动子区DNA甲基化与表达呈负相关,并且检测出26个启动子区差异甲基化且差异表达的基因,其中有20个基因启动子区甲基化变化与基因表达变化呈负相关关系,包括IGF2BP1和IGF2BP3两个已知的生长发育相关基因。通过BSP技术对IGF2BP1和IGF2BP3启动子区甲基化水平进行验证,并结合基因表达水平进行分析,发现BSP方法与BS-seq研究结果相一致,均显示IGF2BP1和IGF2BP3启动子区甲基化水平与基因表达水平呈负相关,因此推测IGF2BP1和IGF2BP3可能通过启动子DNA甲基化抑制其自身的表达,进而发挥对京海黄鸡生长发育的调控作用。
[Abstract]:The early growth and development of broilers, especially the growth inflection point, affects the best market time and slaughter weight of broilers, and then affects the economic benefits of the broiler industry. At present, the study on the genetic mechanism of the early growth and development of broilers is rarely.DNA methylation as one of the most common epigenetic modification methods, in transcription and transcription. At present, there are few reports on the epigenetic regulation mechanism in the early growth process of high quality broilers. Therefore, this study selected the growth inflection point (slow growth stage), growth inflection point and inflection point (in the market stage), that is, three special 4,12 and 16 weeks old age. In order to reveal the change of gene expression level in the whole genome of Jinghai yellow chicken during the early growth process, the change of DNA methylation status and the regulation mechanism of DNA methylation on the expression of growth related genes in the early growth process of Jinghai yellow chicken, the change of the gene expression level in the whole genome of Jinghai yellow chicken, the change of DNA methylation and the regulation of the expression of DNA methyl on the growth related genes in the early growth process of Jinghai yellow chicken were studied by the combination of transcription group sequencing and whole genome methylation sequencing. The genetic mechanism of growth and development of chicken and the mechanism of high quality meat and chicken leg muscle fiber development provide reference basis. The main results are as follows: 1. using three nonlinear models to fit the growth curve of 0~25 weeks long development data of Beijing yellow chicken, it is found that the growth curve of the Beijing yellow chicken is close to the "S" type, and the Logistic model is calculated. The growth inflection point of the Jinghai yellow chicken was 11.48 weeks old, and the inflection point was 896.68g.2. to the 9 samples of the Beijing yellow chicken leg muscle at different growth stages (3 repetitions at each stage), and the transcriptional group was sequenced. Each sample finally obtained the available data above the 8Gb (gigabases). A total of 15699 genes expressed in the leg muscles were detected, of which there were 14432 genes. In 4,12 and 16 weeks of age, 59724 and 633 genes were detected at 4 weeks and 12 weeks of age (M4WvsM12W), 4 weeks and 16 weeks (M4WvsM16W), 12 weeks and 16 weeks old (M12WvsM16W) in three groups (FC > 2, FDR0.05). In these differentially expressed genes, the transcriptional causes of MYOD1, FBX032, CEBPB and FOX034 were found. Some genes in the long axis of the chicken, such as GH, IGF2BP1, IGF2BP2, IGF2BP3, IGFBP3, IGFBP5 and IGFBP7, were enriched by GO and Pathway enrichment analysis of differentially expressed genes, and found that the differentially expressed genes were significantly enriched in cell proliferation and differentiation, cell migration, cell adhesion and connection, and cell growth. The growth and development related biological processes (P0.05) of skeletal muscle fiber development, muscle organ development and skeletal muscle cell differentiation. The genes involved in the growth and development related genes, including MYOD1, IGFBP3, IGFBP5,1GFBP7 and MYH10, are known. In the significantly enriched signaling pathway (P0.05), 5 signals associated with growth and development have been found. There are 42 genes involved in the 5 pathways, including FGF2, FGF16, FN1, MYH10, MAPK9, etc., which are important in the early growth of the Beijing yellow chicken and the development of the leg muscles. .4. in this study, the whole genome DNA methylation Atlas of the Jinghai yellow chicken leg muscle was constructed by BS-seq technology, and its DNA methylation characteristics were revealed. MCpG was the main way of DNA methylation in the Jinghai yellow chicken genome, and the minimal part of DNA methylation occurred on the CHG and CHH sequences; the CG type methylation site flanking sequences did not exist base preference. The downstream base of the CG methylation cytosine site was most likely to occur with adenine (A), and the level of methylation at the CG site decreased significantly near TSS, and the gene body region increased significantly, while the methylation level of the non CG site increased significantly near TSS and decreased significantly in the gene body region; in the analysis of the methylation level of different functional components, the promoter was started. The methylation level of the subregion and CpG island is the lowest, the methylation level of the CDS and exons is the highest, and the DNA methylation level and the methylation density on the chromosomes have great changes in the methylation group of the Beijing yellow chicken in different stages of.5. (M4W vs M12W, M4W vs M16W and M12W vsM16W), respectively, to detect 21412260 and 1550 differential methylation respectively. Region (DMR), involving 10221055 and 797 differentially methylated genes, respectively, of which 263239 and 229 differentially methylation occurred in the promoter region.6. for the functional enrichment analysis of the differentially methylated genes in the promoter region. It was found that these differentially methylated genes were significantly enriched in the regulation of transforming growth factor beta receptor signaling pathway. Cell migration and cell proliferation regulation, cell differentiation and cell proliferation regulation, skeletal system development, actin cytoskeleton, cell adhesion and other growth related biological processes (P0.05), as well as transforming growth factor beta signal pathway, cell cycle, lysosome, ribosome, cell adhesion molecule 5 growth related signaling pathways (P0.05), the genes involved in the gene including BMP4 and SMAD4 and other growth related genes.7. integrated the methylation data with the transcriptional data. It was found that most of the gene promoter regions were negatively correlated with DNA methylation and expression, and 26 genes were detected for differentially methylation and differential expression in the promoter region, including 20 gene promoters. The change of methylation was negatively correlated with the change of gene expression, including two known growth and development related genes of IGF2BP1 and IGF2BP3. The methylation level of the promoter region of IGF2BP1 and IGF2BP3 was verified by BSP technology and the gene expression level was analyzed. It was found that BSP formula was consistent with the results of BS-seq research, and all showed IGF2BP1. There is a negative correlation between the level of methylation in the promoter region of IGF2BP3 and the level of gene expression, so it is presumed that IGF2BP1 and IGF2BP3 may inhibit the expression of its own by the promoter DNA methylation, and then play a role in regulating the growth and development of Jinghai yellow chicken.
【学位授予单位】:扬州大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:S831
【相似文献】
相关期刊论文 前8条
1 翁宏飚;曹锦如;叶爱红;牛宝龙;何丽华;沈卫锋;孟智启;;家蚕基因组DNA甲基化分析[J];蚕业科学;2008年01期
2 陈曦;王锐;丁国华;;植物DNA甲基化研究方法及进展[J];北方园艺;2013年12期
3 姜群;于红;孔令锋;李琪;;太平洋牡蛎不同组织DNA甲基化的F-MSAP分析[J];中国水产科学;2014年04期
4 李忠爱;郭强梨;王子成;;NaCl胁迫对留兰香基因组DNA及其甲基化的影响[J];中国农学通报;2013年30期
5 任子利;赵彦玲;杨小淦;陆阳清;卢晟盛;卢克焕;;3种来源猪胚胎激活后6h内基因组DNA甲基化变化模式[J];中国兽医学报;2011年03期
6 陆许可;王德龙;阴祖军;王俊娟;樊伟丽;王帅;赵小洁;张天豹;叶武威;;NaCl和Na_2CO_3对不同棉花基因组的DNA甲基化影响[J];中国农业科学;2014年16期
7 陈静;翟飞;夏明秀;陈蓉;徐琪;常国斌;李建超;马腾;王洪志;徐璐;刘璐;陈国宏;;鸡不同生精细胞中Piwil1基因启动子区DNA甲基化差异研究[J];畜牧兽医学报;2014年09期
8 徐青;张沅;孙东晓;王雅春;唐绍青;赵萌;;应用MSAP方法检测鸡不同组织基因组的甲基化状态[J];遗传;2011年06期
相关会议论文 前10条
1 苏改秀;权力;吴凤岐;黄小兰;;儿童系统性红斑狼疮基因组甲基化水平的研究[A];中华医学会第十七次全国儿科学术大会论文汇编(上册)[C];2012年
2 秦海红;朱小华;梁俊;吴金峰;杨永生;王上上;施伟民;徐金华;;microRNA-29b对T细胞DNA甲基化的调控在SLE发病中的作用研究[A];2013全国中西医结合皮肤性病学术年会论文汇编[C];2013年
3 朱小华;徐金华;;UVB暴露对SLE患者DNA甲基化的影响[A];中华医学会第十八次全国皮肤性病学术年会论文汇编[C];2012年
4 朱小华;徐金华;;UVB暴露对SLE患者DNA甲基化的影响[A];2012全国中西医结合皮肤性病学术会议论文汇编[C];2012年
5 洪婷婷;王天露;周翔;;DNA甲基化的可视化检测[A];中国化学会第29届学术年会摘要集——第22分会:化学生物学[C];2014年
6 李红智;;乳腺癌变、发展过程的bcl-2甲基化及与表达的关系[A];中国细胞生物学学会2005年学术大会、青年学术研讨会论文摘要集[C];2005年
7 杨娜;李智;;5-aza-2-deoxycytidine诱导EJ细胞RUNX3基因组蛋白甲基化改变[A];中华医学会第七次全国检验医学学术会议资料汇编[C];2008年
8 许秀娥;葛银林;徐宏伟;;siRNA沉默KDR基因对人乳腺癌细胞甲基化和凋亡作用的研究[A];山东生物化学与分子生物学会2009年学术会议论文汇编[C];2009年
9 龚春梅;杨淋清;陶功华;刘庆成;刘建军;庄志雄;;短期暴露于纳米SiO_2对HaCaT细胞基因组DNA甲基化的影响[A];达能营养中心青年科学工作者论坛优秀论文集2013年第2期[C];2013年
10 张陶蓝;刘禹利;林瑾沂;王惠贞;张绮芬;朱云诚;刘英姿;王果;周宏灏;;女性好发癌症细胞株的甲基化研究[A];中华医学会第十次全国妇产科学术会议妇科肿瘤会场(妇科肿瘤学组、妇科病理学组)论文汇编[C];2012年
相关博士学位论文 前10条
1 张艳;PAX9、SLC5A8、CDH13及ZBED3在甲状腺肿瘤中的甲基化研究[D];复旦大学;2014年
2 苏改秀;儿童系统性红斑狼疮基因组甲基化水平及LINE-1序列甲基化水平的研究[D];北京协和医学院;2016年
3 李旭;基于组学数据的模拟空间环境健康监测及其应用研究[D];哈尔滨工业大学;2016年
4 张媛媛;全基因组DNA甲基化模式及其在复杂疾病分析中的应用研究[D];西安电子科技大学;2016年
5 陆晓筱;ACTL6A/c-Myc交互介导的ACTL6B甲基化促进肝细胞肝癌EMT的机制[D];浙江大学;2017年
6 薛倩;京海黄鸡腿肌全基因组甲基化和转录组分析研究[D];扬州大学;2017年
7 胡元晶;应用焦磷酸测序技术HPV分型检测及甲基化研究[D];天津医科大学;2010年
8 徐哲奕;2型糖尿病大血管并发症中血管平滑肌细胞增殖相关基因DNA甲基化的作用研究[D];华中科技大学;2014年
9 周庆兵;含砷中药对骨髓增生异常综合征异常基因甲基化调控作用研究[D];中国中医科学院;2014年
10 王俊杰;卵巢癌中EZH2和DNA甲基化调控hMLH1基因表达的实验研究[D];华中科技大学;2013年
相关硕士学位论文 前10条
1 赵晓丽;全基因组甲基化谱和表达谱联合建立骨髓增生异常综合征的CpG岛甲基化表型及其临床价值[D];复旦大学;2014年
2 高英龙;~(12)C诱发小鼠旁器官基因组甲基化及遗传分析[D];大连海事大学;2015年
3 贺蕾;CYP1A1和GSTP1基因启动子区CpG岛甲基化与抗结核药物性肝损伤的关系研究[D];华北理工大学;2015年
4 袁云龙;急性冠脉综合征全基因组甲基化差异及其功能的生物信息学分析[D];南京大学;2015年
5 郭蓉;甲基化作用调节miR-200b表达及对胃腺癌细胞增殖、侵袭能力的影响[D];天津医科大学;2015年
6 邢扬;NPTX2基因甲基化与年龄推断的相关性研究[D];重庆医科大学;2015年
7 朱晓雯;髓系肿瘤中miR-378基因5’侧翼区甲基化态势的临床研究[D];江苏大学;2016年
8 杨成子;人脑胶质瘤中CDO-1基因启动子区域甲基化及逆甲基化研究[D];安徽医科大学;2016年
9 马文娟;BDNF甲基化与新疆维、汉两民族老年轻度认知功能障碍的关联性研究[D];新疆医科大学;2016年
10 艾雪;不同细胞系和组织基因的甲基化差异分析及其序列与CpG甲基化程度的关联[D];内蒙古大学;2016年
,本文编号:1846294
本文链接:https://www.wllwen.com/yixuelunwen/dongwuyixue/1846294.html