融合决策树方法的新疆伊犁地区草地植被分类研究
[Abstract]:Grassland resources are not only the largest natural green barrier on the earth, but also have a great influence on the development of economy and ecology. With the development of "3s" (GPS,GIS,RS), remote sensing technology provides a more rapid and accurate technical means for the investigation and evaluation of grassland resources. The monitoring of grassland resources by remote sensing has the characteristics of large-scale, space-time and small-scale in scope, and can monitor the change of grassland resources in real-time. The extensive application of remote sensing technology provides reference for rational utilization and evaluation of grassland resources in Yili area of Xinjiang. This research takes Yili area as the object, uses the MODIS data and the climate data, carries on the pretreatment to the 2013 field survey data, on the basis of the remote sensing image, uses the decision tree classification of the computer to classify the grassland resources of the study area. Then the classification results are matched with the visual interpretation results to verify the accuracy of the classification. The main contents of this paper are as follows: (1) the remote sensing retrieval of grassland resources in Yili area of Xinjiang is based on the survey data of 146 grassland sample plots in Yili area. The spatial distribution characteristics of vegetation biomass and soil bulk density in Yili region of Xinjiang were inversely analyzed by weight parameter analysis and weighted fusion of each factor on biomass and soil bulk density. Using ArcGIS software, the spatial distribution characteristics of vegetation biomass and soil bulk density in Yili region of Xinjiang were inversely analyzed. The results show that the inversion results of biomass and soil bulk density are basically consistent with the topography, geomorphology and climate characteristics of Yili area, and reflect the spatial distribution characteristics of grassland vegetation in Yili area. (2) Establishment of visual interpretation of grassland resources. The first grassland survey data in 1980, 1: 250000 land use map and TM image data were superimposed according to the interpretation principle by using artificial visual interpretation method. Finally, the visual interpretation of grassland resources in Yili area is completed. (3) by analyzing the index vegetation and vegetation community information of grassland vegetation in Yili area, the characteristics of different grassland types are accurately described by the automatic identification of grassland resources. The six indexes are converted from grid to point, and then the attributes of all indexes are added to one index by multi-value extraction. Then according to the threshold range, the grassland type is extracted according to the attribute, then the point is converted into grid, and the distribution map of each grassland type is output. The overall accuracy of decision tree classification is 68.45%, and the Kappa coefficient is 0.5205. In general, decision tree classification has certain reference value in grassland resource classification. The classification accuracy of decision tree classification based on expert knowledge for alpine meadow, warm mountain meadow, warm meadow grassland, warm desert and other grassland types is higher, the mapping accuracy is 97.13% ~ 100%, and the user precision is 81.57% / 100%. It is shown that the application of decision tree classification in these categories has high reliability. However, the classification accuracy of warm steppe, warm desert steppe and low-land salinized meadow is lower, and the error is 35.19% and 85.53%. The reasons need to be further analyzed.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:S812
【相似文献】
相关期刊论文 前10条
1 杨亚娟,景国臣;论草地植被与土地荒漠化[J];水土保持科技情报;2003年01期
2 ;国际草地植被学术讨论会[J];中国草原;1988年03期
3 云石蓬;国际草地植被学术讨论会在呼和浩特召开[J];植物生态学与地植物学学报;1989年01期
4 王金亭;;西藏草地植被(封四说明)[J];植物杂志;1989年03期
5 薛玲,秦梅枝,曹江营,张树礼,李利平;阿尔善油田草地植被恢复方法探讨[J];内蒙古草业;1994年Z1期
6 张国森,陈华育;福建省草地植被的分布及区划[J];草业科学;1995年01期
7 周振林;飞播草地植被演替动态研究[J];内蒙古草业;1995年Z1期
8 李博;我在草地植被生态领域的工作[J];中国科学院院刊;1996年01期
9 裴浩,敖艳红;草地植被监测中背景影响的订正[J];中国农业资源与区划;1998年05期
10 孙会巧;;山西省娄烦县草地植被监测报告[J];农民致富之友;2013年24期
相关会议论文 前6条
1 高洪文;王运琪;吴增禄;吴欣明;;安太堡露天煤矿废弃地恢复草地植被研究及效益[A];中国草地科学进展:第四届第二次年会暨学术讨论会文集[C];1996年
2 蒲小鹏;师尚礼;张德罡;浦军;;肃北县石包城地区草地植被图谱分析[A];全国农业遥感技术研讨会论文集[C];2009年
3 程积民;万惠娥;王静;雍绍萍;;黄土高原半干旱区草地植被恢复与建造研究[A];中国植物学会七十周年年会论文摘要汇编(1933—2003)[C];2003年
4 钱拴;伏洋;;三江源地区生长季气候变化趋势及草地植被响应[A];2009中国草原发展论坛论文集[C];2009年
5 程积民;万惠娥;;黄土高原草地植被恢复重建的理论依据与调控机制[A];中国草业可持续发展战略——中国草业可持续发展战略论坛论文集[C];2004年
6 程积民;万惠娥;;黄土高原草地植被恢复重建的理论依据与调控机制[A];中国草业可持续发展战略论坛论文集[C];2004年
相关重要报纸文章 前8条
1 佚名;退化天然草地植被改良技术[N];中国畜牧兽医报;2009年
2 ;京津风沙源草地植被建植技术[N];科技日报;2006年
3 记者 张丽;引进冰草 新疆荒漠地区草地植被添新丁[N];新疆科技报(汉);2007年
4 铁铮;科尔沁草地植被恢复有术[N];科技日报;2005年
5 中国科学院植物研究所研究员 陈佐忠;创造美好生态环境要大力发展草业[N];中国畜牧报;2003年
6 刘丁山;肃南黑河流域综合治理见实效[N];甘肃日报;2008年
7 董峻;“科技快车”推动农业增效农民增收[N];大众科技报;2003年
8 本报记者 毛小瑞;技术引进为我国农业注入新活力[N];农民日报;2004年
相关博士学位论文 前7条
1 陈思宇;青藏高原地区草地植被与湖泊变化及其关系研究[D];兰州大学;2015年
2 查勇;草地植被变化遥感监测方法研究[D];南京师范大学;2003年
3 曹子龙;内蒙古中东部沙化草地植被恢复若干基础问题的研究[D];北京林业大学;2007年
4 赵玲;天山山区气候变化及其对草地植被的影响[D];新疆农业大学;2012年
5 高添;内蒙古草地植被碳储量的时空分布及水热影响分析[D];中国农业科学院;2013年
6 李瑞;北方农牧交错带草地植被动态研究[D];北京林业大学;2008年
7 李鹏;黄土区草地植被水土保持作用机理试验研究[D];西北农林科技大学;2003年
相关硕士学位论文 前10条
1 张旭琛;融合决策树方法的新疆伊犁地区草地植被分类研究[D];兰州交通大学;2015年
2 李聪;草地植被指数季节变化的遥感动态监测研究[D];新疆农业大学;2005年
3 刘建;宁夏盐池县沙化草地植被变化及围封措施效果研究[D];北京林业大学;2011年
4 沈彦;宁夏盐池沙化草地植被动态特征及围封效应研究[D];北京林业大学;2008年
5 张金鹏;呼伦贝尔沙化草地植被恢复模式效果评价及动态分析[D];北京林业大学;2010年
6 孔玉华;围封和放牧对辽西北沙化草地植被恢复与土壤肥力提高的影响[D];沈阳农业大学;2010年
7 于婷;青海省1982-2003年草地NDVI变化分析[D];青海师范大学;2010年
8 毛思慧;盐池沙化草地植被与土壤演替及生态环境质量评价研究[D];宁夏大学;2013年
9 常博;祁连山排露沟流域草地植被特征及其对水分条件的响应[D];甘肃农业大学;2014年
10 黄文娟;吉林省西部草原土壤微域特征及其与植被耦合关系研究[D];吉林农业大学;2005年
,本文编号:2437582
本文链接:https://www.wllwen.com/yixuelunwen/dongwuyixue/2437582.html