放牧对草原生态系统碳、氮循环的影响:整合分析
[Abstract]:Grazing is one of the main ways of the grassland ecosystem. Unreasonable grazing activity not only threatens the biological diversity and stability of the grassland ecosystem, but also can obviously change the structure and function of the grassland ecosystem and cause the loss of carbon and nitrogen. In recent years, although a large number of studies on the effects of grazing on the carbon and nitrogen cycle of the grassland ecosystem have been carried out worldwide, the general rules of grazing on the cycle of carbon and nitrogen, especially the underground process, still have a wide range of disputes. In this paper, through the setting of the standard,105 papers on the effects of grazing on the carbon and nitrogen cycle of the grassland ecosystem were selected from over 2,500 articles of the world, and the analysis database was established. the analysis database mainly comprises a plant ground carbon library, a plant underground carbon library, a soil carbon library, a litter material carbon pool, a microbial biomass carbon pool, a plant ground part nitrogen bank, a plant underground part nitrogen bank, a soil nitrogen bank, a litterfall nitrogen bank, a microbial biomass nitrogen bank and a soil carbon-nitrogen ratio, The parameters such as the carbon-nitrogen ratio, the microbial carbon-nitrogen ratio, the carbon-nitrogen ratio of the litters, the soil respiration flux, the soil net-nitrogen mineralization rate, the soil net-nitrogen nitrification rate, the soil bulk density, the soil pH value, the soil temperature and the soil humidity, and the like are the root system carbon-nitrogen ratio, the microbial carbon-nitrogen ratio, the litter-litter carbon-nitrogen ratio, the soil The general rule of the process of carbon and nitrogen cycling in the grassland ecosystem is analyzed in depth based on the database and the integral analysis method. The results showed that the grazing activity significantly reduced the carbon pool of soil, the carbon pool of the underground part of the plant, the amount of soil microbial biomass and the carbon pool of litters, with the reduction of 10.28, 13.72, 21.62 and 8.93%, respectively. The reduction was 13.38, 4.40, 24.40, and 10.39%, respectively; the reduction of the amount of microbial biomass and nitrogen was the largest compared to other parameters. In contrast, grazing significantly increased the carbon-to-nitrogen ratio of the soil and the root system, but decreased the carbon-to-nitrogen ratio of the microorganism and the litter. Grazing activity significantly increased the soil respiration flux of the grassland ecosystem, the net nitrogen mineralization and the nitrification rate of the soil, and the growth rate was 4.25, 30.63 and 12.88%, respectively. In addition, grazing activities increased soil bulk density, pH and temperature, but reduced soil moisture. Grazing density significantly changes the size or even the direction of the carbon-nitrogen cycle. The increase of the soil carbon pool and the soil nitrogen bank was 0.78% and 3.24%, respectively. However, the soil carbon pool and the soil nitrogen bank were significantly reduced with moderate and severe grazing, and the reduction of the soil carbon pool was 3.45% and 9.92%, respectively, and the reduction of the soil nitrogen bank was 8.41% and 13.04%, respectively. Similarly, mild grazing increased the carbon and nitrogen ratio of the underground part of the plant to 2.99% and 10.14%, respectively, and the medium and the severe decreased the underground carbon pool of the plant by 3.17% and 24.1%, the carbon-nitrogen ratio of the litter was 22.61% and 30.18%, respectively. In comparison with moderate and severe grazing, the reduction of microbial nitrogen and litter nitrogen under mild grazing is the largest. For flux, mild grazing significantly increased the respiration of the soil by 11.53%, but moderate and severe grazing significantly reduced the respiratory flux by 12.7% and 32.6%, respectively. The weighted response ratio of the soil net nitrogen mineralization rate was from 48.87% to 10.85% from mild to severe grazing. However, the effect of mild grazing on the Nitrification rate of the soil is not obvious, while the moderate and severe grazing significantly reduces the net nitrogen nitrification rate of the soil by 13.43% and 103.06%. The results of the study also show that the environmental factors such as biological and non-biological factors have a significant effect on the response of the carbon and nitrogen cycle of the grassland ecosystem to the grazing activities. Grazing disturbance in the semi-humid area/ wet area is significantly higher than that of the arid/ semi-arid area for the soil carbon pool, the plant underground carbon pool, the soil nitrogen bank and the plant underground nitrogen bank. Similarly, the weighted response ratio of the soil respiration in the semi-humid area/ wet zone was 0.099-0.023 (P0.01), slightly above the arid/ semi-arid area. In the arid/ semi-arid area, the response amplitude of the carbon pool and the litter carbon pool shows a more significant reduction in the half-humid area/ wet area. The different grazing types significantly changed the response and even the direction of most of the observed variables to the grazing activity. Grazing time and annual average temperature were significantly related to the response ratio of soil carbon bank and the response ratio of soil nitrogen bank. There was a significant correlation between the annual average rainfall and the response ratio of the soil carbon reservoir, but the correlation between the response ratio of the soil and the soil was not obvious. In addition, the response ratio of the soil carbon reservoir is positively related to the response ratio of the soil nitrogen bank. In general, grazing activities affect the carbon and nitrogen cycle of the grassland ecosystem on the global scale, and the distribution pattern of carbon and nitrogen in the ground and the ground is changed. Grazing density significantly changes the response and even response of different carbon and nitrogen banks to grazing activities. The effects of grazing density and climate factors on the process of carbon and nitrogen circulation should be considered in the future land ecosystem model in the prediction and assessment of the global carbon and nitrogen balance of the grassland ecosystem.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:S812
【相似文献】
相关期刊论文 前10条
1 夏X堡;;关于草原生态系统休养生息的浅见[J];环境教育;2008年02期
2 盖志毅;;全球视野下的中国草原生态系统可持续发展[J];草原与草坪;2009年04期
3 ;锡林郭勒草原生态系统举行国际学术会议[J];草业科学;2009年09期
4 丁国梁;;草原生态系统的合理保护建设与利用[J];中国牧业通讯;2010年24期
5 邵泗滨;;草原生态系统研究[J];四川草原;1980年02期
6 黄德华;《草原生态系统》简介[J];植物生态学与地植物学丛刊;1985年01期
7 任继周;;草原生态系统生产效益的放大[J];中国草原与牧草;1986年03期
8 吴阿迪;杜铁瑛;;青海草原生态系统几个问题浅析[J];中国草原与牧草;1986年06期
9 陶黎;鼠类在草原生态系统中的作用[J];内蒙古草业;1995年Z1期
10 刘奎;草原生态系统中的蚯蚓[J];国外畜牧学(草原与牧草);1999年02期
相关会议论文 前8条
1 唐艳鸿;;试探讨人类活动和全球变化对中国草原生态系统的物质循环和生物多样性的影响——兼简单介绍一个日中草原生态系统研究合作项目[A];Ecological Services of Grassland in China--Proceedings of CCAST (World Laboratory) Workshop[C];2000年
2 孙国栋;穆穆;;理论草原生态系统平衡态对有限振幅参数扰动的稳定性研究[A];第七次全国动力气象学术会议论文摘要[C];2009年
3 孙杰;;温性荒漠草原生态系统可持续发展能量模式探讨[A];2006中国草业发展论坛论文集[C];2006年
4 孙杰;;温性荒漠草原生态系统可持续发展能量模式探讨[A];中国草学会青年工作委员会学术研讨会论文集[C];2007年
5 赵娜;邵新庆;王X;;草原生态系统的碳汇潜力[A];第八届博士生学术年会论文摘要集[C];2010年
6 康乐;陈永林;;在放牧条件下草原生态系统中蝗虫群落演替规律的研究[A];北京昆虫学会成立四十周年学术讨论会论文摘要汇编[C];1990年
7 康晓明;郝彦宾;李长生;崔骁勇;王金枝;王艳芬;;基于DNDC模型模拟围封和放牧对内蒙古羊草生态系统碳收支的影响[A];第八届博士生学术年会论文摘要集[C];2010年
8 李金霞;刘晓光;辛晓平;;呼伦贝尔草甸草原生态系统大型土壤动物生态地理特征[A];自然地理学与生态安全学术论文摘要集[C];2012年
相关重要报纸文章 前10条
1 王菡娟;重建退化的草原生态系统应加强科学论证[N];人民政协报;2006年
2 水利部农村水利司副司长 姜开鹏;关于建设草原生态系统水利保障体系的思考[N];中国水利报;2002年
3 全国畜牧总站 冯葆昌;强牧惠牧富牧政策如春雨滋润草原生态系统[N];中国畜牧兽医报;2014年
4 记者 张守敏;中蒙美三国合作研究高原草原生态系统项目在呼启动[N];呼和浩特日报(汉);2009年
5 ;应让草原生态系统休养生息[N];中国畜牧兽医报;2008年
6 国家环保总局国际司原司长 夏X堡;让草原生态系统休养生息[N];中国环境报;2007年
7 孟昭丽 武勇;我国退耕还林达1.3亿亩退牧还草1.9亿亩[N];中国畜牧兽医报;2006年
8 慕欣;草原鼠害的防治(一)[N];中国畜牧兽医报;2006年
9 中国环境科学研究院 舒俭民 教授;草原干旱问题与对策[N];中国畜牧水产报;2001年
10 主讲人 夏霖 整理 本报记者 马之恒;鼠兔消灭后更糟[N];北京科技报;2011年
相关博士学位论文 前1条
1 Jyoti Bhandari;放牧和降水量对内蒙古草原生物多样性和生产力的影响[D];中国农业大学;2015年
相关硕士学位论文 前9条
1 周贵尧;放牧对草原生态系统碳、氮循环的影响:整合分析[D];江苏大学;2016年
2 谢东东;条件非线性最优扰动方法在草原生态系统模式模拟不确定性中的应用研究[D];兰州大学;2012年
3 李娜;增温和施氮肥对荒漠草原生态系统土壤温室气体通量的影响[D];内蒙古农业大学;2010年
4 陈志芳;模拟增温和氮素添加对荒漠草原生态系统气体交换的影响[D];内蒙古农业大学;2012年
5 张谦;中国北方典型草原水分利用效率对昼夜不对称增温的特异性响应[D];河南大学;2013年
6 李鹏;藏北高寒草原生态系统氮贮量空间分异规律[D];西藏大学;2009年
7 范亚军;亚气生蓝藻在草原生态系统中的作用[D];东北师范大学;2004年
8 赵新宇;云雾山国家级自然保护区典型草原生态系统价值研究[D];中国科学院研究生院(教育部水土保持与生态环境研究中心);2014年
9 莫志鸿;北方草原生态系统NPP、R_h和SOC对气候变化的响应[D];中国农业科学院;2012年
,本文编号:2511175
本文链接:https://www.wllwen.com/yixuelunwen/dongwuyixue/2511175.html