抗Aβ人源性抗体的制备
[Abstract]:Alzheimer's disease (AD) is a degenerative disease of the central nervous system that occurs frequently in the elderly. Its main clinical features are memory loss, cognitive and motor dysfunction. At present, the pathogenesis of AD is not very clear. Among them, amyloid protein (Abeta) is polymerized in the form of soluble monomer under normal physiological conditions. The accumulation of amyloid proteins with neurocytotoxicity is considered to be a key event in the pathogenesis of AD. Studies have shown that Abeta is a common pathway of various factors causing Alzheimer's disease and a key factor in the pathogenesis and development of AD. Therefore, Abeta is generally regarded as an effective target molecule for the treatment of AD. The beta-amyloid precursor protein (APP) is formed by the beta-metabolic pathway. It is generally composed of 39-43 amino acids and has a secondary structure of a beta-folded lamella. The molecule as a whole is hydrophobic, easy to aggregate and form insoluble deposits. In 1999, Schenk et al. first used Abeta 1-42 to host AD model mice. A breakthrough has been made in animal immunity. Since then, reports have confirmed that A-beta peptide and its antibody can be used in immunotherapy of AD and can achieve good therapeutic effect. Betabloc (AN1792), a vaccine of A-beta 1-42 developed by Elan Company, has been found to be effective in eliciting immune response and producing amyloid A-beta after phase I clinical trials. Sedimentation-bound antibodies can effectively activate microglia to clear plaques formed by amyloid A beta deposition and significantly improve cognitive function in patients. Unfortunately, during phase II clinical trials, some patients experienced inflammation in the brain and the tests were terminated. Meanwhile, passive immunotherapy for AD has been achieved. Great progress has been made. Studies have shown that anti-A-beta-N-terminal antibodies can effectively improve AD-related symptoms without triggering an immune response in Th1 cells. We hope that a large number of human phage antibody libraries will be screened by bacterial screening combined with solid phase screening to obtain specific antibodies, and lay a foundation for the development of therapeutic antibodies against AD.
Firstly, in order to screen antibodies against Abeta 1-12 and provide epitope peptides for preliminary epitope identification of specific antibodies, we divided Abeta 1-42 into four epitope peptides: Abeta 1-12, Abeta 12-23, Abeta 21-32 and Abeta 31-42 according to the molecular structure of Abeta 1-42 and the characteristics of bacterial flagella display system. The recombinant plasmids expressing four peptides fused with bacterial flagellin were expressed on E.coli GI826 flagella by bacterial flagella surface display system. SDS-PAGE electrophoresis, Western blot and immunofluorescence assay showed that the four peptides fused with flagellin and were successfully displayed on E.coli GI. The 826 surface.
Secondly, high throughput screening of human antibodies against A-beta-42 and its N-terminal (A-beta-12, A-beta-15) has been carried out. At present, most of the antibodies used in AD passive immunity research institute are mouse-derived antibodies, which limit their application in human body. The antibodies obtained from human antibody library avoid this problem and can be directly applied without humanization modification. In this study, we used deduction screening for A-beta-12, solid-phase screening for A-beta-42, solid-phase binding screening for A-beta-12, and solid-phase screening for A-beta-15 to screen a large-capacity phage single-chain antibody library with a capacity of 1.35 *1010. During the screening process, about 2000 clones were selected randomly, of which the positive rate of bacterial screening clones was low, and the positive rate of solid-phase screening clones could reach 50%. However, because solid-phase screening was aimed at the full-length screening of A-beta 1-42, the specific antibodies could be obtained with any region of A-beta 1-42. Domain binding. In order to screen high-quality antibodies against Abeta 1-12, we used the method of deduction screening for Abeta 1-12 and then solid-phase screening for Abeta 1-12. The positive rate of bacterial solid-phase binding screening for Abeta 1-12 was up to 40%. At the same time, we also carried out solid-phase screening for Abeta 1-15, but clone positive. Finally, we obtained a specific phage antibody G10 in the process of bacterial screening. Two specific phage antibodies 18,26 were obtained during the solid phase screening of A-beta 1-42. Two specific phage antibodies H9 and B5 were obtained during the solid phase screening of A-beta 1-15. A specific antibody 87.18 of which is the same as H9. This result proves that our scheme is reliable and effective.
Thirdly, we transformed the specific single-chain antibody into full-antibody form and identified the specificity of the instantaneous expression of the whole antibody. In order to obtain a more stable form of antibody, we modified the full-antibody form of the five strains of phage-specific single-chain antibodies and the five strains of antibodies were fine in 293-F. Results No. 18 and No. 87 antibodies were not expressed, and G10, 26 and B5 were expressed. Specificity identification showed that G10 lost its binding ability to AB1-42, 26 and B5 could specifically bind to AB1-42. Finally, we obtained two specific antibodies, 26 and B5.
Finally, we identified the epitopes of 26 and B5, and detected the affinity of the antibodies binding to the N terminal of A beta (A beta 1-12, A beta 1-15). The epitopes of 26 and B5 were identified by the A beta fragment peptides displayed on the flagella surface of bacteria. The results showed that 26 specifically binds to A beta 31-42 and B5 specifically binds to A beta 1-12. The antigenic epitope of 26 was located at A beta 31-42 and the antigenic epitope of B5 was located at A beta 1-12. Non-competitive ELISA showed that the affinity of B5 was KD=1.4 *10-8mol/L.
To sum up, we have constructed a flagella display system for the peptide fragments of Abeta 1-42, which lays a foundation for further study on the epitope of Abeta. Two specific single chain antibodies 26 and B5 were obtained from a large-scale phage antibody library by high-throughput screening of antibody library, and epitopes were carried out at the whole antibody level. The results showed that the epitope of 26 was located in A beta 31-42 and the epitope of B5 was located in A beta 1-12. The affinity of B5 antibody was 1.4 *10-8 mol/L, which laid a foundation for further study of therapeutic antibody of AD.
【学位授予单位】:中国人民解放军军事医学科学院
【学位级别】:硕士
【学位授予年份】:2010
【分类号】:R392
【相似文献】
相关期刊论文 前10条
1 张娟;张君;余晓林;吴倩;蒋飞龙;黄长武;李兴禄;黄爱龙;郑建;;特异性O1群稻叶型霍乱弧菌单克隆抗体的制备、筛选及识别抗原表位的分析[J];第三军医大学学报;2008年15期
2 王佑春,李河民,胡宗汉;针对HBsAg α决定簇不同表位单克隆抗体的筛选及某些特性的研究[J];细胞与分子免疫学杂志;1992年01期
3 黄启华,吴子松,高鹏,张桂威,邱东川,,周国兴,山建忠,蔡兴平;识别血吸虫成虫多肽表位单克隆抗体细胞株的建立及用于检测循环抗原的研究[J];中国人兽共患病杂志;1996年05期
4 马靖;含B细胞表位的重组抗体能诱发构象特异性抗体应答[J];国外医学.预防.诊断.治疗用生物制品分册;1996年06期
5 闭兰;对HIV疫苗应答与对HIV应答的区别[J];国外医学.预防.诊断.治疗用生物制品分册;1998年03期
6 范宝剑;人体对丙型肝炎病毒表位免疫应答的分析[英][J];国外医学.预防.诊断.治疗用生物制品分册;1999年03期
7 黄峙,杨红宇,向军俭;应用噬菌体展示技术研究过敏原表位的新进展[J];现代免疫学;2004年04期
8 韦三华;尹文;雷迎峰;胡兴斌;杨敬;吕欣;孙梦宁;徐志凯;;稳定表达丙型肝炎病毒复合多表位基因P815细胞克隆的建立[J];第四军医大学学报;2006年01期
9 樊建勇;杨慧兰;关蕾;王颖;仕瑶慧;;单纯疱疹病毒2 gD蛋白T细胞表位区的预测及克隆[J];中国皮肤性病学杂志;2007年06期
10 熊君辉;郭清顺;葛胜祥;顾颖;陈毅歆;苗季;杜海莲;史维国;张军;夏宁邵;;抗戊型肝炎病毒单克隆抗体识别表位的初步研究[J];病毒学报;2008年02期
相关会议论文 前10条
1 潘志明;张晓明;焦新安;Richard Lo-Man;Claude Leclerc;刘秀梵;;重组减毒细菌运送CD8~+ T细胞表位的效应分析[A];全国人畜共患病学术研讨会论文集[C];2006年
2 吴静波;翁云层;丘金浪;李荣;黎诚耀;王文敬;;布鲁氏菌弱毒疫苗株M5-90 BP26和OMP31蛋白T细胞表位的鉴定[A];中国畜牧兽医学会兽医公共卫生学分会第三次学术研讨会论文集[C];2012年
3 王书峰;;免疫表位数据库的现状及新型表位数据库的构思[A];第六届全国免疫学学术大会论文集[C];2008年
4 张小俊;孟颂东;;HLA-A24和-A33限制性B、C型乙肝病毒核心蛋白T细胞表位的鉴定与评价[A];2010年中国科学院微生物研究所博士后学术年会暨第二届博谊论坛论文摘要集[C];2011年
5 余剑琴;郑飞云;徐云升;欧荣英;张乾;;HPV18 E7抗原HLA-DRB1*0301限制性Th表位的鉴定[A];2011年浙江省妇产科学学术年会暨“妇产科常见疾病的临床研究新进展”学习班论文汇编[C];2011年
6 吴德铭;刘镇明;黄毓茂;罗满林;;抗PRV gE主要抗原表位单克隆抗体的研制[A];猪的重要传染病防治研究新成果——中国畜牧兽医学会家畜传染病学分会第五届理事会第二次全体会议暨防检疫专业委员会第7次学术交流会论文集[C];2002年
7 杜以军;姜平;杨晓玮;汤景元;李玉峰;李永东;;猪口蹄疫病毒多抗原表位重组腺病毒的构建与鉴定[A];第六届全国会员代表大学暨第11次学术研讨会论文集(上)[C];2005年
8 杜玲;王惠菊;杨建民;高寒;周永列;陶厚权;;Th线性肽对人肝素酶B细胞表位多抗原肽的免疫增强作用[A];首届浙江省消化病学术大会论文汇编[C];2008年
9 胡雪梅;张兆松;吴海玮;李春林;苏川季;王诗宁;王勇;吴观陵;;日本血吸虫线粒体相关蛋白的表位筛选及其免疫保护性研究[A];中国动物学会第八次全国寄生虫学学术讨论会论文摘要汇编[C];2001年
10 张艳;郑龙;宋淑霞;魏林;;对携带HCC表位的HBc病毒样颗粒负载的DC疫苗的免疫评价[A];河北省免疫学会第六次免疫学大会资料汇编[C];2010年
相关重要报纸文章 前10条
1 新纹;非典病毒并不“强”?[N];医药经济报;2004年
2 朱娟邋何勇;点滴汇就“明星”风采[N];中国电力报;2007年
3 ;买房子——把好最后一关[N];中华建筑报;2002年
4 ;何谓 移表 改类[N];西南电力报;2002年
5 张天华;我旅美学者筛出抗SARS单抗[N];中国医药报;2004年
6 ;居民用电有讲究[N];西藏日报;2000年
7 曾耀英;HIV疫苗 研究思路[N];中国中医药报;2006年
8 束洪福;丙肝疫苗研究有新进展[N];科技日报;2008年
9 河北 吴新年;“自动编号”巧改良[N];电脑报;2004年
10 张中桥;胃癌免疫治疗研究有新进展[N];中国医药报;2002年
相关博士学位论文 前10条
1 王雅英;北京地区人博卡病毒流行率调查及表位研究[D];北京协和医学院;2011年
2 李光富;日本血吸虫复合表位及其在CpG ODN协同下诱导的Th1应答对小鼠的免疫保护作用[D];南京医科大学;2004年
3 林治华;QSAR分析结合实验方法用于T细胞表位快速筛选的研究[D];第三军医大学;2003年
4 李长岭;PfCP-2.9疟疾疫苗候选抗原系列突变体的构建及其表位和免疫学分析[D];第二军医大学;2010年
5 杨玲;乙型肝炎病毒变异与慢加急性肝衰竭发病关系的研究[D];南方医科大学;2010年
6 高军;丙型肝炎病毒多表位抗原的基因合成与免疫原性研究[D];第二军医大学;2004年
7 殷瑛;以乙型肝炎病毒核心蛋白为载体的新型疫苗研究[D];中国人民解放军军事医学科学院;2010年
8 沈柱;特异性置换肽下调银屑病自身反应性T细胞功能的研究[D];第四军医大学;2005年
9 陈安;一个新的HBcAg之H-2K~d限制性表位的鉴定及其功能特性研究[D];第三军医大学;2004年
10 潘志明;重组减毒细菌运送CD8~+T细胞表位的机理及携带新城疫病毒DNA 疫苗鼠伤寒沙门氏菌的免疫生物学特性研究[D];扬州大学;2004年
相关硕士学位论文 前10条
1 孙超;抗Aβ人源性抗体的制备[D];中国人民解放军军事医学科学院;2010年
2 赵r嚺
本文编号:2209905
本文链接:https://www.wllwen.com/yixuelunwen/shiyanyixue/2209905.html