结核分枝杆菌GlmU的表达、纯化及其酶促反应动力学研究
[Abstract]:Tuberculosis is still an infectious disease with high morbidity and mortality worldwide. One third of the world's population is infected with Mycobacterium tuberculosis, and its incidence is on the rise year by year. Today, the increasing number of multidrug-resistant tuberculosis (MDR-TB) makes it difficult to treat tuberculosis that could be cured once again. Therefore, the primary task now is to find new targets from Mycobacterium tuberculosis itself to develop new anti-tuberculosis drugs.
Target selection is of course inseparable from the strong cell wall structure of Mycobacterium tuberculosis, which is an important part of the survival of Mycobacterium tuberculosis. The unique structure of cell wall has become the focus of recent research. The core layer consists of three parts: peptidoglycan near the cell membrane, polyarabinogalactose in the middle and mycobacterial acid in the outermost. Arabinogalactose is linked to peptidoglycan via L-rhamnose-D-N-acetylglucosamine disaccharide conjugation molecule. UDP-N-acetylglucosamine is a glycosyl donor of N-acetylglucosamine, and its synthesis undergoes four steps. GlmU participates in acetylation and ureaylation with its bifunctional function. At the same time, gene knockout model has confirmed that glmU is necessary for bacterial growth. In addition, the biosynthesis of UDP-N-acetylglucosamine is different in humans, and the activity of glucosamine-1-phosphate acetyltransferase does not exist in humans. Therefore, GlmU, especially its acetyltransferase activity, is a potential drug target. Studying the characteristics of UDP-N-acetylglucosamine acetyltransferase is helpful to develop safe, reliable and non-toxic anti-knotting drugs. Nuclear drugs.
The purpose of this paper is: (1) to express the GlmU protein of Mycobacterium tuberculosis in E. coli BL21 (DE3) by pET16b expression vector; (2) to purify the GlmU protein by affinity chromatography, and to identify the purified GlmU protein by SDS-PAGE and Western blotting; (3) to compare the methods for determining the activity of GlmU enzyme, and select the high-throughput screening method. GlmU inhibitor detection method was selected; (4) GlmU enzymatic reaction kinetics was studied to determine the optimal reaction conditions and determine the reaction kinetics constant Km value and Vmax, so as to facilitate the screening of inhibitors in the future.
The results obtained in this paper are as follows:
1. induce the high expression of GlmU protein in Escherichia coli BL21 (DE3).
BL21 (DE3) was induced to express recombinant GlmU protein by 1 mM IPTG and 30 oC shaking culture for 3.5 hours. The supernatant was analyzed by SDS-PAGE and Western blotting. The results showed that there was a high expression of GlmU protein in the supernatant with a molecular weight of 54.10 kD.
2. purification of GlmU protein by affinity chromatography
The recombinant GlmU protein was purified by histidine-Ni2+ affinity chromatography. The elution fraction 1-5 was analyzed by SDS-PAGE. The results showed that the purity of the elution fraction 2-5 was high and no other impurity proteins were found. The elution fraction 3-5 was analyzed by Western blotting. GlmU protein was obtained. The concentration of elution component 4 was 442 ug/ml by Coomassie brilliant blue method. The component was used for enzyme activity analysis.
3. establish a method for the determination of GlmU enzyme activity and facilitate the establishment of a high throughput screening method for enzyme inhibitors.
GlmU acetyltransferase activity:
(1) HPLC method: Nova-Pak C18 (3.9 x 150 mm, 4 micron) column was used. Phosphate buffer (pH 6.5) -methanol (95:5) was used as mobile phase. The flow rate was 1.0 mLmin-1. The elution time of HSCoA was about 9.6 min at 259 nm.
(2) Chemical colorimetry: DTNB (Ellman's Reagent) was added into the enzyme reaction system, and the content of HSCoA was determined by detecting the thiol group. The absorbance was measured at 405 nm by enzyme labeling instrument.
GlmU uridine transferase activity:
(1) HPLC method: The reaction product UDP-GlcNAc was detected by Nova-Pak C18 (3.9 *150 mm, 4 micron) column with 20 mM triethylamine-acetic acid buffer (pH 4.0) as mobile phase at a flow rate of 0.5 mL min-1 at a wavelength of 260 nm. The elution time was 7.8 min.
(2) Chemical colorimetry: pyrophosphatase was used to hydrolyze pyrophosphate into phosphoric acid, phosphoric acid and ammonium molybdate formed phosphomolybdic acid complex, then the color of malachite green changed from yellow green to blue green. The absorbance value of malachite green was measured at 630 nm to determine the content of phosphoric acid.
4. the kinetics of GlmU protease reaction was studied.
(1) determination of initial velocity:
GlmU acetyltransferase activity: GlcN-1-P and AccCoA were reacted with different concentrations of GlmU protein in 37oC for different time, and the enzyme concentration curve and reaction time curve were drawn.
Urotransferase activity: substrate GlcNAc-1-P, UTP and pyrophosphatase reacted with different concentrations of GlmU at 37oC for different time, and plotted the enzyme concentration curve and reaction process curve. The results showed that the initial reaction rate of GlmU urease enzyme concentration range was 1.33 ug/ml, the time range was 5 minutes.
(2) determine the best reaction conditions for GlmU two activities:
The optimum temperature of GlmU acetyltransferase is 30oC, the optimum pH is 8.0, and the activity of GlmU acetyltransferase does not need the participation of Mg2 +; the optimum temperature of GlmU urease transferase is 42oC, and the optimum pH is 8.0. In the absence of Mg2 +, the activity of urease transferase can not be detected. It can be seen that Mg2 + is GlmU uridine. The optimum concentration of activator of transferase is 20 mM.
(3) GlmU enzyme kinetic constants were measured under the best reaction conditions.
The Km value and Vmax of AcCoA were measured by double reciprocal method. For acetyltransferase, the Km value of AcCoA was 0.224+0.07mM, the maximum rate of Vmax was 0.119+0.038 mMmin-1, the Km value of GlcN-1-P was 0.061+0.005mM, and the maximum rate of Vmax was 0.081+0.003mM. For urease, the Km value of substrate GlcNAc-1-P was 0.044+0.005mM, the maximum rate Vmax was 0.0054+0.0002mmin-1, the substrate UTP Km value was 0.024+0.0015mM, and the maximum rate was 0.006+0.0001mmmmin-1.
Conclusion:
The soluble expression of GlmU in E. coli BL21 (DE3) provides a material guarantee for us to study the kinetic characteristics of enzymatic reaction; the chemical coloration method for GlmU enzymatic reaction is accurate, simple, convenient for the study of kinetic characteristics of enzymatic reaction and high throughput screening of GlmU inhibitors; the kinetic characteristics of enzymatic reaction of GlmU are studied. The optimum reaction conditions and the kinetic constants Km and Vmax. were determined.
【学位授予单位】:大连医科大学
【学位级别】:硕士
【学位授予年份】:2009
【分类号】:R378;Q78
【相似文献】
相关期刊论文 前10条
1 柴俊;罗家琴;蒋成砚;朱文豪;张以芳;;牛结核分枝杆菌Ag85b基因的克隆及表达[J];云南大学学报(自然科学版);2007年S3期
2 王瑞博;井申荣;;结核分枝杆菌分泌蛋白TB10.4的功能和应用[J];生命的化学;2011年04期
3 牛雪;吴丛梅;高冷;赵韫慧;殷玉和;;结核分枝杆菌H_(37)Rv异柠檬酸裂解酶基因的克隆表达及活性[J];吉林大学学报(理学版);2011年04期
4 康健;王丽梅;王平;赵勇;张薇;韩文东;丁悦娜;孙志平;柏银兰;徐志凯;;小鼠结核分枝杆菌耐药模型的建立与评价[J];中国实验动物学报;2011年04期
5 王华南;亓英芳;朱婷;于申业;刘慧芳;司微;杨盛;王加明;冯拥军;李素兰;于秀婷;王春来;刘思国;;结核分枝杆菌pdhA基因的原核表达及其免疫原性分析[J];中国兽医科学;2011年07期
6 向志光;林树柱;董娜;袁伟;徐艳峰;秦川;;结核分枝杆菌感染小鼠的脾脏和肺脏组织荷菌量与病理变化[J];中国比较医学杂志;2011年08期
7 丁淑琴;王强;王淑静;王洁;张焱;;结核分枝杆菌rps12基因的克隆及核酸序列的分析[J];宁夏医科大学学报;2011年08期
8 胡锦;谢建平;;碱基切除修复与分枝杆菌基因组稳定性[J];中国细胞生物学学报;2011年03期
9 郭芳芳;邹立林;吴英松;胡志明;李金龙;吕建新;高基民;;用于时间分辨荧光免疫分析的结核分枝杆菌培养滤液蛋白10参照品的制备[J];南方医科大学学报;2011年06期
10 石华;戈朝晖;贾伟;马小明;牛宁奎;董辉;王自立;;结核分枝杆菌分泌蛋白MPB64表达纯化[J];宁夏医科大学学报;2011年08期
相关会议论文 前10条
1 戴广明;曹以诚;杜正平;陈洵;黄曙海;逄宇;周杨;黄海荣;赵雁林;;结核分枝杆菌环介导恒温扩增(LAMP)快速检测方法的构建[A];中华医学会结核病学分会2010年学术年会论文汇编[C];2010年
2 许优;孙惠平;张增贤;刘莉娜;;关于结核分枝杆菌定量方法的研究[A];中华医学会结核病学分会2006年学术会议论文汇编[C];2006年
3 刘毅;李卫民;田苗;孙照刚;李传友;周辉;张治国;高铁杰;高峰;;快速筛选定义北京基因型结核分枝杆菌的新方法[A];2007年中国防痨协会全国学术会议论文集[C];2007年
4 张月新;辛毅;马郁芳;;结核分枝杆菌RmlB的表达、纯化及酶促反应动力学研究[A];2008年全国糖生物学学术会议论文摘要[C];2008年
5 刘焰;刘胜武;谈蓉;马立新;刘君炎;;结核分枝杆菌Ag85B与ESAT-6双顺反子重组腺表达载体的构建[A];第六届全国免疫学学术大会论文集[C];2008年
6 吴园;钟敏;王易伟;钟静;胡频频;毛旭虎;;Rv0341用于诊断依赖利福平结核分枝杆菌结核病的研究概况[A];中国防痨协会临床委员会、中国防痨协会基础委员会学术研讨会论文集[C];2008年
7 张旭霞;张海青;李传友;田苗;赵冰;李卫民;张健源;印云青;焦扬;端木宏谨;;结核分枝杆菌黏附素HBHA防治结核病的动物实验研究[A];2005年中国防痨协会全国学术会议论文集[C];2005年
8 陈曦;张宗德;刘忠泉;贾红彦;邢爱英;古书香;;结核分枝杆菌rv3873、rv3879c基因原核表达载体的构建和表达[A];中华医学会结核病学分会2006年学术会议论文汇编[C];2006年
9 周庆;方中飞;沈小英;宋冰;方孝美;;临床分离结核分枝杆菌的耐药性分析[A];2006年浙江省检验医学学术年会论文汇编[C];2006年
10 陈涛;周琳;周杰;江勇;周志刚;彭建明;文力;彭东东;何超文;钟球;;环介导等温扩增法快速检测结核分枝杆菌的方法建立与临床应用评估[A];中华医学会结核病学分会2011年学术会议论文汇编[C];2011年
相关重要报纸文章 前10条
1 记者 韩晓玲 通讯员 范敬群 金安江;华中农大研究成果获世界声誉[N];湖北日报;2009年
2 庄愉;新型抗结核疫苗的开发研究[N];中国医药报;2002年
3 记者 陈青;让结核菌三天内原形毕露[N];文汇报;2009年
4 钱忠军;华中农大发现新基因有望控制结核病[N];江苏科技报;2009年
5 驻鄂记者 钱忠军 通讯员 金安江 范敬群;发现可能控制结核病的新基因[N];文汇报;2009年
6 记者 黄每裕;珠海推出两种检测试剂新产品[N];中国医药报;2009年
7 庄愉;新型抗结核疫苗的开发研究[N];中国医药报;2002年
8 记者 项铮;团山会议研讨罕见病原体防治策略[N];科技日报;2009年
9 ;整合力量 抗击“瘟神”[N];中国医药报;2003年
10 宋心德;IDSA2基因导致结核杆菌产生抗药性[N];医药经济报;2004年
相关博士学位论文 前10条
1 董海燕;中国13省市结核分枝杆菌基因多态性分析[D];中国疾病预防控制中心;2011年
2 陈嘉臻;结核分枝杆菌特异的RD2/RD11蛋白应用于结核免疫诊断的研究[D];复旦大学;2009年
3 王平;肺分枝杆菌感染临床特征、耐药模式、预后研究及肺组织结核分枝杆菌巢式PCR检测[D];北京协和医学院;2011年
4 陈军;武汉地区结核分枝杆菌药物敏感性及氟喹诺酮耐药分子机制的研究[D];华中科技大学;2011年
5 陈军;武汉地区结核分枝杆菌药物敏感性及氟喹诺酮耐药分子机制研究[D];华中科技大学;2011年
6 乐军;耐药结核分枝杆菌的多维分析[D];复旦大学;2003年
7 孙勇;北京地区结核分枝杆菌耐药分子特点及结核分枝杆菌耐喹诺酮类药物泵机制的初步研究[D];北京市结核病胸部肿瘤研究所;2012年
8 刘凯;结核分枝杆菌潜伏感染者和初发结核病患者免疫分子标识的筛选[D];北京协和医学院;2010年
9 宋文刚;茜草素抗结核分枝杆菌作用机制的蛋白质组学研究[D];吉林大学;2007年
10 姜晓颖;北京地区结核分枝杆菌基因分型及与耐药性关系的研究[D];北京市结核病胸部肿瘤研究所;2012年
相关硕士学位论文 前10条
1 蔡溢;结核分枝杆菌RmlA的表达、纯化以及酶促反应动力学研究[D];大连医科大学;2006年
2 孙文霞;结核分枝杆菌抗原模拟肽纳米金生物传感器诊断结核病的研究[D];湖南师范大学;2011年
3 王霞芳;IFN-γ增强BALB/c小鼠对结核分枝杆菌感染的抵抗力[D];苏州大学;2002年
4 曹立雪;应用膜芯片检测结核分枝杆菌rpoB基因突变[D];中国人民解放军军事医学科学院;2003年
5 韩喜琴;噬菌体生物扩增法检测结核分枝杆菌药物敏感性研究及评价[D];北京市结核病胸部肿瘤研究所;2004年
6 王琳;结核分枝杆菌ClpX和ClpP2蛋白酶的克隆表达及其性质研究[D];西南大学;2010年
7 丁卫民;耐多药肺结核与结核分枝杆菌L型感染的临床研究[D];山西医科大学;2003年
8 吴玉敏;1.结核分枝杆菌去标签Mtb8.4-Hspx和Hspx-Mtb8.4基因克隆及表达 2.FTY720对肾移植受者治疗的安全性和有效性系统评价[D];兰州大学;2010年
9 佘茜;结核分枝杆菌PPE68蛋白的表达及初步应用[D];重庆医科大学;2011年
10 申峻松;结核分枝杆菌lhp基因的原核表达及其产物的单克隆抗体研制[D];扬州大学;2008年
,本文编号:2220429
本文链接:https://www.wllwen.com/yixuelunwen/shiyanyixue/2220429.html