长期生存者资料的参数混合模型
[Abstract]:In cancer clinical trials, because of the overall heterogeneity of patients, some patients who are sensitive to treatment do not show any cancer symptoms or signs, so they are considered to be "long-term survivors (long term survivors)" or healing (cured individuals), That is, in sufficient follow-up time, such individuals do not have a specific end-point event, and usually have a longer censored survival time. Long-term survivors mean that they do not occur or never end-point events (death, relapse of disease, etc.) until the end of the study. In the analysis of this kind of data, we should first determine whether there are long-term survivors in the data. If there is no long-term survival in the data or there is no evidence to confirm the existence of long-term survival, the traditional survival analysis method is used. If there is evidence that there are long-term survivors in the data, and the follow-up is sufficient, the traditional analytical method is not appropriate because it treats the long-term survivors as amputation observation objects, which is obviously unreasonable. Blind use of traditional survival analysis may lead to unreasonable interpretation of the results and even to the opposite conclusion. In this paper, we introduce a statistical model for long-term survivor data-parametric hybrid model, including exponential mixed model and Weibull hybrid model, Burr XII hybrid model. These three models are widely used in the analysis of long-term survival data. We use the goodness-of-fit test to select the best model to fit the actual data, and use the corresponding model to make further analysis. The maximum likelihood method is used to estimate the parameters, and the software S-PLUS6.0 is used to realize the estimation. Through the analysis of examples, it is proved that if the traditional survival analysis method can not make good use of the information provided by the data, the conclusion is not comprehensive, even the opposite, if the traditional survival analysis method is used. If the parameter mixed model is used to analyze the long-term survival data, a comprehensive and correct conclusion can be obtained, and more information can be provided from different sides, which can guide the clinical treatment effectively and reasonably. Furthermore, it makes up for and consummates the deficiency of the classical survival analysis method. With the continuous improvement of medical technology, more and more clinical tumor data belong to long-term survival data. The statistical analysis model for long-term survival data introduced in this paper is of great applicability and practicability, and is worthy of recommendation.
【学位授予单位】:山西医科大学
【学位级别】:硕士
【学位授予年份】:2008
【分类号】:R311
【相似文献】
相关期刊论文 前10条
1 赵景义;余红梅;;参数混合模型在长期生存者资料分析中的应用[J];中国卫生统计;2010年03期
2 傅承主,方积乾,柳青;疾病自然史的随机模型[J];生物数学学报;1996年S1期
3 夏结来;非线性模型统计分析体系及NoSA实现(二)[J];中国卫生统计;2000年05期
4 杨岫岩;疾病预后研究的设计与分析方法[J];中华风湿病学杂志;2002年02期
5 欧阳资生;临床试验中的生存分析[J];中国卫生统计;2003年06期
6 方积乾;生存分析与生物医学研究[J];北京大学学报(医学版);1990年04期
7 贺宪民,贺佳,范思昌;Cox模型与BP神经网络在处理非线性数据时的性能比较[J];数理统计与管理;2004年02期
8 石中陆,谢学民,王志朝;用Cox模型作复方丹参对家兔失血性休克的疗效分析[J];北京大学学报(医学版);1987年04期
9 张忠占;流行病学研究中的嵌套病例对照研究[J];生物数学学报;2001年03期
10 郭政,李霞;遗传性疾病的发病年龄分布与发病风险分析[J];国外医学.遗传学分册;1995年02期
相关博士学位论文 前1条
1 郜艳晖;复杂性状家庭聚集性统计分析方法的研究[D];复旦大学;2004年
相关硕士学位论文 前4条
1 赵景义;长期生存者资料的参数混合模型[D];山西医科大学;2008年
2 任允文;关于删失数据的中值回归模型[D];华东师范大学;2004年
3 任丽梅;不完全数据的统计分析[D];西北工业大学;2004年
4 张晓丹;分位数回归及其在糖尿病治疗中的应用[D];天津大学;2010年
,本文编号:2437120
本文链接:https://www.wllwen.com/yixuelunwen/shiyanyixue/2437120.html