中学数学课堂提问结构研究
本文选题:数学课堂 + 提问结构 ; 参考:《华中师范大学》2017年硕士论文
【摘要】:数学学习是以思维为主的过程,而思维过程又是从问题开始的,数学课堂提问将思维与数学知识统一融合,体现知识形成的思维过程。但是提问不仅要关注某个问题的合理性和指向性,提问的整体逻辑结构也至关重要,系列问题的逻辑化使得单个问题具有启发性,也让数学知识的形成过程具有逻辑性,学生在此过程中便可不断深入地理解知识。研究中学数学课堂的提问结构,可以揭示提问的结构化现状,引起教师对提问结构化的重视,对中学数学课堂教学有着重要意义。本文共有六部分:第一章引言,整理已有文献,讨论问题提出的背景,确定研究的思路与方法。第二章文献综述,将已有研究归为课堂提问的定义和分类、原则和策略、实证研究、问题链和提问结构四小节进行论述,并对这些研究成果进行综述评价。第三章相关概念界定,从数学的抽象性、思维性、逻辑性分析数学课堂提问的概念,在已有研究基础上,将提问结构分为递进式、并列式和交叉式三类。第四章提问结构的理论和实验研究,首先通过相关理论解释提问结构的必要性;然后通过对比实验,论证提问结构对数学教学的影响及其重要性。第五章教学案例统计分析,以教学案例的不同类别、学段、作者地区、作者单位为基本指标,从提问关注度、提问结构化程度和提问结构类型分布三个角度进行差异和特点分析,结论如下:第一,对提问的关注度在不同类别、学段和单位中存在显著差异,不同地区对提问的关注度无差异;高中学段、中学教师、教学实录对提问的关注度更高。第二,提问结构化程度在不同类别、单位中存在显著差异,不同学段、地区的提问结构化程度无差异;高校、教学设计提问结构化程度较高。第三,不同类别、学段、地区、单位的提问结构类型分布均无差异。第四,所有教学案例的提问结构类型分布特点是交叉式最多,其次是递进式,并列式极少。第六章结语,本研究的创新之处在于对提问结构进行类型划分,并通过理论和实验两方面对提问结构的重要性进行论证;同时通过文献计量的方法对教学案例进行分析,揭示提问结构化的现状,以期为提问结构化的研究做出一定的贡献。
[Abstract]:Mathematics learning is the process of thinking, and the process of thinking begins with the problem. Questions in mathematics classroom combine thinking with mathematical knowledge to reflect the thinking process of knowledge formation. But the question not only should pay attention to the rationality and directionality of a question, but also the whole logical structure of the question. The logic of a series of questions makes a single question enlighten, and the forming process of mathematical knowledge is logical. In this process, students can continuously understand the knowledge. The research on the structure of the middle school mathematics classroom can reveal the structure of the question, arouse teachers' attention to the structure of the question, and play an important role in the middle school mathematics classroom teaching. There are six parts in this paper: the first chapter introduces the existing literature, discusses the background of the problem, and determines the research ideas and methods. In the second chapter, the author classifies the existing research into four sections: the definition and classification of classroom questioning, principles and strategies, empirical research, question chain and question structure. The third chapter defines the related concepts, analyzes the concepts of mathematical classroom questioning from the abstractness, thinking and logic of mathematics. On the basis of existing research, the structure of questioning is divided into three categories: progressive, parallel and cross. The fourth chapter is the theoretical and experimental research on the structure of questioning. Firstly, it explains the necessity of the structure of questioning through the relevant theories, and then demonstrates the influence of the structure of questioning on mathematics teaching and its importance through comparative experiments. The fifth chapter is a statistical analysis of teaching cases, taking different categories of teaching cases, learning sections, author regions and author units as the basic indicators, from the perspective of questioning attention. The differences and characteristics of the structured degree of questioning and the type distribution of questioning structure are analyzed. The conclusions are as follows: first, there are significant differences in the degree of attention to questions in different categories, learning paragraphs and units. There is no difference in attention to questioning in different regions, and higher attention is paid to questioning in senior middle school, middle school teachers and teaching records. Second, there are significant differences in the structured degree of questioning in different categories and units, but there is no difference in the structured degree of questioning in different learning stages and regions; in colleges and universities, the structured degree of questioning in teaching design is relatively high. Thirdly, there is no difference in the distribution of question structure types among different categories, learning sections, regions and units. Fourth, the distribution characteristics of all teaching cases are the most cross type, the second is progressive type, and the second is juxtaposition. In the sixth chapter, the innovation of this study lies in the classification of the structure of questioning, and the importance of the structure of questioning is demonstrated through both theory and experiment, and the teaching cases are analyzed by the method of literature measurement. To reveal the current situation of structured questioning, in order to make some contributions to the research of structured questioning.
【学位授予单位】:华中师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:G633.6
【参考文献】
相关期刊论文 前10条
1 韩红军;刘国庆;赵伟华;;高中数学课堂教学中“问题链”的类型及结构模式[J];数学教学研究;2015年01期
2 倪科技;;问题串的教学设计方式比较[J];中学数学教学参考;2015年Z1期
3 叶立军;周芳丽;;基于录像分析背景下的优秀数学教师课堂提问能力的研究[J];数学教育学报;2014年03期
4 乔爱萍;;论弗赖登塔尔数学教育思想的现实意义[J];江苏教育研究;2014年04期
5 周莹;王华;;中美中学数学优秀教师课堂提问的比较研究——以两国同课异构的课堂录像为例[J];数学教育学报;2013年04期
6 杨向东;豆雨松;;两位不同专长的数学教师课堂提问结构的对比研究[J];上海教育科研;2013年03期
7 温建红;;数学课堂有效提问的内涵及特征[J];数学教育学报;2011年06期
8 韩保席;;数学问题链教学法对避免产生数困生作用的研究[J];江苏教育研究;2011年07期
9 王后雄;;“问题链”的类型及教学功能——以化学教学为例[J];教育科学研究;2010年05期
10 黄光荣;问题链方法与数学思维[J];数学教育学报;2003年02期
相关博士学位论文 前2条
1 宋晓平;数学课堂学习动力系统研究[D];南京师范大学;2006年
2 程广文;数学课程提问研究[D];华东师范大学;2003年
相关硕士学位论文 前3条
1 汪露;基于文献计量学的数学教育研究现状[D];华中师范大学;2015年
2 武文鑫;中学数学课堂提问的现状调查与实践探索[D];南京师范大学;2013年
3 杨慧;高中数学教学的“问题链”设计研究[D];上海师范大学;2012年
,本文编号:1790046
本文链接:https://www.wllwen.com/zhongdengjiaoyulunwen/1790046.html