高职高专院校师范生整数算理知识现状调查与教学策略研究
本文选题:学科知识 + 陈述性知识 ; 参考:《山东师范大学》2017年硕士论文
【摘要】:数学教师的数学素养对于在数学学科中全面落实素质教育,起到关键性作用,作为准小学数学教师的高职高专师范生就应在校学习期间努力具备扎实的数学专业基础和全面把握数学学科知识。小学数学学科中的知识看似简单,但其中蕴含着丰富的数学学科知识,其中算理知识的教与学越来越受到教育界的重视。根据认知教育心理学理论,算理知识属于陈述性知识,整数算理知识是以整数及其运算为主要内容的一个逻辑体系,主要包括数的认识、数的运算等内容。笔者将整数算理知识分为事实性算理、概念性算理两大类,事实性算理分为术语知识与具体细节和要素的知识两个亚类,概念性算理分为表征图式知识与原理通则知识两类,同时将小学数学相关整数算理知识进行大略分类汇总整理。对于师范生整数算理知识的现状研究分两部分进行了解。首先编制了问卷调查师范生对算理知识的了解程度以及师范生在实习见习过程中遇到的问题学生是否意识到与算理知识掌握与否有关。经统计分析发现,虽然师范生在实习见习过程中遇到的不少困惑与算理知识相关,但还是有不少学生仅仅归因为课堂教学实施能力薄弱,还未意识到小学数学基础专业知识是根本。这说明师范生虽然承认算理知识在小学数学教学中的重要性,但没有意识到自身正缺乏这类知识储备,只是把“将不明白”的现象归因为自己课堂教学实施技能的欠缺。再次设计了整数算理知识测试卷,从而对学生整数算理知识的掌握程度进行实证研究。利用spss17.0、excle2010对数据进行统计分析发现,师范生在整数算理知识掌握程度情况不容乐观,基本都是一知半解的程度,很多基本概念的理解容易产生混淆,并且不能正确解释运算的原理和依据。归其原因其一受应试教育影响,机械式学习方式已成思维定势。师范生整数算理知识与高等数学学科成绩之间无统计意义的正相关关系,这说明师范生通过高强度的反复练习或记忆进行学习,即使有些问题没有搞明白,通过考试前的临阵磨枪仍能取得较好的成绩,但是这样的机械式学习方式放在算理知识的测试中却不能奏效,不能保证算理知识的测试取得好成绩。其二,对小学数学算理知识缺乏深入理解,,无法正确剖析计算背后的原理知识。根据调查研究及实证分析,确定师范生整数算理知识的教学策略:其一,注重陈述性知识的有意义学习过程,整理建构算理知识体系;其二,注重知识主动加工活动,结合教材深刻理解算理知识。通过在课堂探讨以及课后作业布置等方式提出相关的思考问题,让师范生尝试自主查阅资料学习,通过有意义学习的方式加强对算理基础理论专业知识的抽象与形式水平的理解。经过一段时间的教法类教学实践,笔者对于整数算理知识的教学积累了丰富的教学案例,师范生对算理知识的掌握程度有了较大改善,并且产生浓厚的研究兴趣,在技能大赛与论文取得了可喜的成绩。
[Abstract]:Mathematics Teachers' mathematical literacy plays a key role in carrying out quality-oriented education in the course of mathematics. As a quasi primary school mathematics teacher, the students of higher vocational colleges should have a solid foundation of mathematics and a comprehensive grasp of the knowledge of mathematics during their study. There is a rich knowledge of mathematics, in which the teaching and learning of rational knowledge are paid more and more attention by the educational circles. According to the theory of cognitive education psychology, the intellectual knowledge belongs to the declarative knowledge, and the integral calculus knowledge is a logical system with the integer and its operation as the main content. It mainly includes the knowledge of the number and the operation of the number. The integers are divided into two categories: factual calculation and conceptual calculation. The factual calculation is divided into two subcategories of terminology knowledge and specific details and elements, and conceptual calculation is divided into two categories, which represent schematic knowledge and principle general principles. At the same time, the mathematics knowledge of primary school mathematics is summarized and collated in a brief classification. There are two parts of the present study on the integral calculus knowledge of normal students. First, we have compiled a questionnaire to investigate the degree of the students' understanding of the rational knowledge and whether the students in the course of the internship probation are aware of whether the students are aware of the mastery of the rational knowledge. Many of the perplexities encountered in the course are related to the knowledge of calculation, but there are still a number of students who are only attributable to the weakness in the implementation of the classroom teaching and the basic knowledge of basic mathematics in primary schools. This shows that the normal students are not aware of the lack of such knowledge, although they acknowledge the importance of mathematical knowledge in primary school mathematics teaching. Reserve, only the phenomenon that "will not understand" is attributable to the lack of the implementation skills of the classroom teaching. Redesigned the integral calculus knowledge test roll, so as to carry out an empirical study on the degree of students' knowledge of integer calculus. Using SPSS17.0 and excle2010 to analyze the data by statistical analysis, it is found that the normal students are in the mastery of integral calculus knowledge. The degree of degree is not optimistic, basically is the degree of half understanding, the understanding of many basic concepts is easy to produce confusion, and can not correctly explain the principle and basis of operation. The positive correlation of meaning means that normal students learn through high intensity repetition or memory. Even if some problems are not understood, they can still get better results through the front grinding guns before the exam, but such a mechanical way of learning can not work in the test of rational knowledge and can not guarantee the rational knowledge. The second, the lack of deep understanding of the knowledge of mathematical mathematics in primary schools, and the inability to correctly analyze the principles behind the calculation. According to the investigation and empirical analysis, the teaching strategies for the integer calculation of normal students are determined: first, the intentional learning process of the declarative knowledge is paid attention to, and the construction of the constructive knowledge system is arranged. In order to improve the understanding of the abstract and formal level of the professional knowledge of the basic theory by means of meaningful learning, the students will try to consult the data learning independently through the classroom discussion and the homework assignment. For some time, the teaching practice of teaching law has accumulated rich teaching cases for the teaching of integral calculus knowledge. The students' master degree of mathematical knowledge has been greatly improved, and a strong interest in research has been produced, and a gratifying achievement has been achieved in the skills competition and paper.
【学位授予单位】:山东师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:G652;G623.5
【参考文献】
相关期刊论文 前10条
1 蒋敏杰;;小学数学计算教学算理的结构分析及教学策略[J];中小学教师培训;2016年07期
2 施晓亮;;小学数学计算教学中算理教学的研究[J];中国校外教育;2015年13期
3 王敏丽;;重视算理算法 培养运算能力[J];学周刊;2014年28期
4 杨泽忠;周海银;;大学数学专业高年级学生数学问题解决缄默知识获得的调查研究[J];数学教育学报;2014年03期
5 巩子坤;刘萍;;程序性知识教与学研究——以义务教育阶段数学为例[J];课程.教材.教法;2014年04期
6 戚旭燕;;遵循思维特点 实施算理教学[J];教学月刊小学版(数学);2013年05期
7 徐彦辉;;论数学计算及其教学[J];数学教育学报;2011年02期
8 陈建平;;由建构与算理看戴震的《勾股割圜记》[J];自然科学史研究;2011年01期
9 史宁中;;《数学课程标准》的若干思考[J];数学通报;2007年05期
10 曲安京;袁敏;唐泉;;中国古代历法家对“算理”的探究[J];自然科学史研究;2007年01期
相关博士学位论文 前3条
1 孙兴华;小学数学教师学科教学知识建构表现的研究[D];东北师范大学;2015年
2 袁广锋;中学体育教师教学知识发展研究[D];福建师范大学;2006年
3 吕林海;数学理解性学习与教学研究[D];华东师范大学;2005年
相关硕士学位论文 前4条
1 向玉梅;高中生导数学习挫折的归因研究[D];山东师范大学;2016年
2 朱瑞芳;高中生对算理知识的掌握研究[D];新疆师范大学;2015年
3 吴帆;小学双语数学教师的算理知识研究[D];新疆师范大学;2014年
4 沈艳平;算法引入方式与数学观形成的关系[D];上海师范大学;2010年
,本文编号:2009894
本文链接:https://www.wllwen.com/jiaoyulunwen/xiaoxuejiaoyu/2009894.html