WSN中移动节点定位及其在智慧校园中的应用研究
发布时间:2018-01-17 12:34
本文关键词:WSN中移动节点定位及其在智慧校园中的应用研究 出处:《河北师范大学》2015年硕士论文 论文类型:学位论文
更多相关文章: 无线传感器网络 移动节点定位算法 颜色定位 信号分解定位 应用 智慧校园
【摘要】:移动节点定位是无线传感器网络(WSN)的关键技术之一,本文通过对已有移动节点定位算法的总结和分类,分别从定位算法两大分类体系——基于距离和基于非距离两方面提出了新的移动节点定位算法。最后,对移动节点定位在智慧校园中的建设进行了理论阐述。提出的定位算法其中之一为颜色定位算法的改进算法,该算法利用收集的信号,在与移动节点能直接通信的信标节点的信号交叠区域内局部采样;引入距离比例因子,对平均跳距权值化,优化了CDL中跳距的计算公式;借助RGB差值序列对样本点滤波并将差值序列绝对值作为加权标准计算移动节点的坐标。仿真结果表明与Efficient Color-theory based Dynamic Localization(E-CDL)、Monte Carlo Localization(MCL)等经典的移动节点定位算法比较,新算法定位误差减少了33%以上,具有较好的定位效果。另一种算法是基于采样滤波的信号矢量分解移动定位算法。该算法是以接收信号强度(Received Signal Strength,简称RSS)的测距技术为基础,借助无线传感器网络中MCL类粒子滤波定位算法的采样、过滤方法,并融入物理中力的分解和合成的思想。该算法通过建立直角坐标系,分解合成移动节点、样本点与信标节点间的信号矢量,利用误差圆环采样,比较移动节点与样本点的信号合矢量进行滤波,将信号合矢量模差绝对值最小的样本点坐标的均值作为移动节点的坐标。仿真结果表明,在同样的实验条件下,该算法的定位精度明显高于相比较的其它算法,且该算法不需要添加任何硬件设备。WSN中的移动节点定位应用范围广泛,有军事、医疗、家庭、教育等,其在教育上的应用还属于新型领域。本文主要论述了移动节点定位在教育中的重要应用——智慧校园的建设。简要介绍了智慧校园的概念和核心特征,详细的陈述了移动节点定位在智慧校园中的作用,重点介绍了智慧校园的两大应用实例——校园生活和智慧教室。两种移动节点定位算法为智慧校园中移动定位的应用奠定了开发基础,移动节点定位在智慧校园中应用的理论陈述为其在智慧校园中的实践奠定了理论基础和科学指导.
[Abstract]:Mobile node location is one of the key technologies in wireless sensor networks (WSNs). This paper summarizes and classifies the existing mobile node localization algorithms. A new location algorithm for mobile nodes is proposed from two major classification systems, distance based and non-distance based. Finally, a new location algorithm for mobile nodes is proposed. In this paper, the construction of mobile node location in intelligent campus is described theoretically. One of the proposed localization algorithms is the improved color location algorithm, which uses the collected signals. A local sampling is performed in a signal overlap region of a beacon node that can communicate directly with a mobile node; The distance ratio factor is introduced to optimize the calculation formula of the hopping distance in CDL. The RGB difference sequence is used to filter the sample points and the absolute value of the difference sequence is taken as the weighted standard to calculate the coordinates of the mobile node. The simulation results show that the difference sequence is similar to the Efficient Color-theory. Based Dynamic Localization (. E-CDL). Compared with the classical mobile node localization algorithms, such as Monte Carlo Localization, the new algorithm reduces the localization error by more than 33%. Another algorithm is the signal vector decomposition mobile location algorithm based on sampling filter. The algorithm is based on the received signal strength (. Received Signal Strength. Based on the distance measurement technology of rss, sampling and filtering method of MCL particle filtering algorithm in wireless sensor network is used. The algorithm combines the idea of decomposition and synthesis of forces in physics. By establishing a rectangular coordinate system, decomposing and synthesizing the signal vectors between moving nodes, sample points and beacon nodes, the algorithm takes advantage of the error circle sampling. The mean value of the sample point coordinate with the minimum absolute value of the signal combination vector mode difference is taken as the moving node coordinate. The simulation results show that under the same experimental conditions. The location accuracy of the algorithm is obviously higher than that of other algorithms, and the algorithm does not need to add any hardware devices. WSN mobile node location application range, including military, medical, family, education and so on. Its application in education is also a new field. This paper mainly discusses the construction of intelligent campus, which is an important application of mobile node orientation in education, and briefly introduces the concept and core characteristics of intelligent campus. The role of mobile node positioning in smart campus is described in detail. This paper mainly introduces two application examples of intelligent campus-campus life and wisdom classroom. The two mobile node localization algorithms lay a foundation for the application of mobile location in intelligent campus. The theoretical statement of mobile node positioning in the intelligent campus lays a theoretical foundation and scientific guidance for its practice in the intelligent campus.
【学位授予单位】:河北师范大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:G40-057
【参考文献】
相关期刊论文 前10条
1 黄梅根;常新峰;;一种基于蒙特卡罗法的无线传感器网络移动节点定位算法研究[J];传感技术学报;2010年04期
2 孙巍,王行刚;移动定位技术综述[J];电子技术应用;2003年06期
3 王洁;王洪玉;高庆华;张晓云;;基于信号特征序列的粒子滤波跟踪算法[J];电子学报;2010年10期
4 刘志华;张双;;WSN中局部采样滤波的新颜色移动节点定位法[J];电子与信息学报;2014年10期
5 顾小清;谢明颖;付世容;;美国NSF教育技术项目分析[J];开放教育研究;2010年04期
6 吴颖骏;;浙江大学:基于“云”的智慧校园[J];中国教育网络;2010年11期
7 宗平;朱洪波;黄刚;许建真;;智慧校园设计方法的研究[J];南京邮电大学学报(自然科学版);2010年04期
8 朱洪波;张登银;杨龙祥;孙知信;宗平;;南京邮电大学 基于物联技术的“智慧校园”建设与规划[J];中国教育网络;2011年11期
9 任倩倩;李建中;王宇;;无线传感器网络具有跟踪质量保证的节点选择算法[J];计算机学报;2012年10期
10 彭雪庄;陆以勤;邓健鸿;;智慧校园——学校教育信息化纵深发展[J];教育信息技术;2013年12期
,本文编号:1436218
本文链接:https://www.wllwen.com/jiaoyulunwen/xuekejiaoyulunwen/1436218.html