当前位置:主页 > 经济论文 > 房地产论文 >

房价影响因素及R语言实现

发布时间:2018-01-17 02:26

  本文关键词:房价影响因素及R语言实现 出处:《中国科学技术大学》2014年硕士论文 论文类型:学位论文


  更多相关文章: 房价 k-means聚类 多元回归 R语言


【摘要】:房价成为近十多年来热议的社会话题,房价过高已经成为严重的社会问题。房价的影响因素复杂,本文从以下几个方面寻找房价影响因素:宏观经济、人口、利率、区域、房地产发展规模。本文只探究商品住宅房价的影响因素,时间跨度从2005年年初到2013年底,研究的对象是全国以及31个大陆省份或者直辖市。k-means聚类将31个地区分成四类:发达地区、较发达地区、不发达地区和落后地区,四个地区的房价有明显差异。 本文建立了房价与影响因素的回归方程。众多影响房价的因素中,影响力较大的几个因素是可支配收入、城镇化水平、工业化水平和地区差异。可支配收入、城镇化水平与房价正相关,工业化水平与房价负相关。房价的地区差异呈现明显的从东部沿海到西部内陆递减的规律。利率是影响房价的一个不可忽视的因素,它对房价产生一个滞后两到三年的反作用力。消费者信心指数(CCI)与房价正相关,CCI越高房价越高。本文使用的数据分析工具是R语言,它具备强大的数据处理和图形功能,是近年来新兴的一种计算机语言。
[Abstract]:Housing price has become a hot social topic for more than a decade, and the excessive housing price has become a serious social problem. The influence factors of house price are complex. This paper looks for the influencing factors of house price from the following aspects: macro economy, population. Interest rate, region, real estate development scale. This paper only explores the impact of commodity housing prices, the time span from 2005 to end of 2013. The research object is the whole country and 31 mainland provinces or municipalities directly under the Central Government. The 31 regions are divided into four categories: developed regions, more developed areas, underdeveloped areas and backward areas. There are significant differences in house prices in the four regions. In this paper, the regression equation of house price and influencing factors is established. Among the many factors affecting house price, the most influential factors are disposable income, urbanization level, industrialization level and regional difference. Urbanization level is positively correlated with house price, industrialization level is negative correlation with house price. The regional difference of house price shows the law of decreasing from east coast to west inland. Interest rate is a factor that can not be ignored. The consumer confidence index (CCI) has a positive correlation with housing price. The higher the CCI, the higher the house price. The data analysis tool used in this paper is R language. It has powerful data processing and graphics functions, is a new computer language in recent years.
【学位授予单位】:中国科学技术大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:O212.4;TP312.1

【参考文献】

相关期刊论文 前9条

1 周建军;;我国房地产价格的影响因素及其合理性研究[J];商业研究;2009年04期

2 王来福;郭峰;;货币政策对房地产价格的动态影响研究——基于VAR模型的实证[J];财经问题研究;2007年11期

3 杨建荣,孙斌艺;政策因素与中国房地产市场发展路径——政府、开发商、消费者三方博弈分析[J];财经研究;2004年04期

4 杨永华;;论房价和房价收入比[J];经济学家;2006年02期

5 梁云芳;高铁梅;;中国房地产价格波动区域差异的实证分析[J];经济研究;2007年08期

6 肖可砾;;房产泡沫及中国房地产调控政策分析[J];江西社会科学;2012年04期

7 童长,

本文编号:1435910


资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/fangdichanjingjilunwen/1435910.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6d581***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com