当前位置:主页 > 医学论文 > 实验医学论文 >

负载全肿瘤抗原及SOCS1siRNA转染的树突状细胞杀伤儿童恶性肿瘤细胞的研究

发布时间:2018-05-11 02:23

  本文选题:全肿瘤抗原 + 树突状细胞 ; 参考:《第四军医大学》2010年博士论文


【摘要】: 研究背景 儿童恶性肿瘤现已成为危害儿童生命的常见疾病。与成人恶性肿瘤一样,目前对儿童恶性肿瘤的治疗多采用手术、化疗、放疗三大传统治疗。由于儿童的药代动力学和药效动力学不同于成人,常用的放化疗措施均伴随着明确的近、远期毒副作用,影响患者的生长发育及长期生存者的生活质量,且伴有转移率和复发率高的风险。因此,亟需一种高效、安全的治疗儿童恶性肿瘤的方法。 基于树突状细胞(dendritic cells,DCs)的免疫治疗正逐渐成为治疗肿瘤患者的重要方法之一。正常情况下,DC以不成熟的形式存在。未成熟的DC激活T淋巴细胞的能力较弱,只有成熟的DC能刺激初始T淋巴细胞,使T细胞活化,刺激机体免疫应答。如何大量高效率制备体外诱导的DC,并增强DC诱导的抗肿瘤免疫能力,已成为研究DC疫苗的重点和难点问题。机体针对自身肿瘤相关抗原的免疫杀伤受到内源性抑制机制的制约,常导致杀伤效力减低,对许多肿瘤的免疫治疗因此难以取得预期效果。近年研究发现,细胞因子信号传导抑制蛋白(SOCS1)是存在于DC内调节T细胞激活能力及获得性免疫的内源性抑制分子。SOCS1可抑制T细胞及其它免疫细胞内的JAK活性,对多种细胞因子(如IFN-γ等)的信号转导均起抑制作用,是调节DC抗原提呈以及获得性免疫幅度的关键分子之一。在DC内抑制SOCS1的表达是否可增强DC诱导的特异性杀伤儿童恶性肿瘤细胞的能力,迄今鲜有报道。 因此,本研究的目的是: 1)探索从外周血单核细胞(PBMC)获取大量成熟DC的可行性及刺激DC成熟的策略。 2)观察负载全肿瘤抗原的DC刺激T细胞对其增殖及杀伤自体及异体实体瘤鼻咽瘤细胞能力的影响。 3)探讨用siRNA技术沉默SOCS1表达,观察其对DC抗肿瘤免疫能力的作用,为提高DC临床免疫治疗儿童非实体瘤白血病的疗效提供实验基础和理论依据。 实验方法 1)肿瘤细胞培养:活检组织采用组织块法培养。CNE-2Z及K562细胞按常规方法培养。 2)全肿瘤抗原制备:采用反复冻融法,并用60Coγ射线照射(剂量25Gy)。 3) DC的体外诱导及扩增:采用PBMC分离法,加入细胞因子GM-CSF、IL-4培养,培养第3天加入全肿瘤抗原、第7天加入TNF-α刺激DC成熟。 4) DC形态学鉴定:分别采用倒置显微镜、扫描电镜和投射电镜。 5) DC表面抗原及成熟度检测:采用流式细胞仪法。 6)肿瘤DC刺激T细胞增殖能力检测:采用四氮唑蓝试验(MTT法)。 7)肿瘤DC活化的CTL体外杀伤活性检测:采用MTT法。 8)肿瘤DC活化的CTL分泌IFN-γ能力检测:采用ELISPOT实验。 9) DC内SOCS1的表达:分别用RT-PCR和Western blot测定其mRNA和蛋白表达。 实验结果 1) DC形态学鉴定:倒置显微镜及电镜下可见细胞表面典型的树突样突起。 2)培养5天负载全肿瘤抗原的DC(未成熟DC),其细胞表面标志性分子HLA-DR、CD1a、CD80、CD83和CD86经流式细胞检测阳性率分别为:(60.86±5.42)%、(21.84±2.52)%、(5.49±6.32)%、(6.82±1.24)%和(1.24±0.90)%,而经过TNF-α刺激的负载全肿瘤抗原的DC(成熟DC),上述细胞表面分子的阳性率分别为(86.14±8.32)%、(78.28±11.42)%、(78.24±12.64)%、(67.25±14.24)%和(85.26±9.14)%,各表面分子的表达明显高于未成熟DC(P 0.01~0.05)。 3)随着DC:T细胞比例由1:100增至1:5,各组T细胞增殖的刺激指数均呈增加趋势。负载全肿瘤抗原的DC刺激T细胞增殖的刺激指数高于未负载全肿瘤抗原的DC。 4)经过负载全肿瘤抗原的DC活化的CTL对自体或异体鼻咽癌细胞均具有杀伤活性,其对鼻咽癌细胞的杀伤率与效靶比成正比。 5)用负载全肿瘤抗原的DC孵育的T细胞中分泌IFN-γ的细胞数目显著多于未负载全肿瘤抗原的DC组和单独T细胞组(P㩳0.05)。 6)在培养第7天加入TNF-α(1000 U/mL)刺激DC成熟后,K562-DC中SOCS1 mRNA和蛋白表达增加。经SOCS1 siRNA(SOCS1 siRNA1和siRNA2)转染成熟DC 24 h可明显降低K562-DC中SOCS1 mRNA及蛋白的表达。 7)培养5天负载全肿瘤抗原的DC(未成熟DC),其细胞表面标志性分子HLA-DR,CD1a、CD80、CD86和CD83经流式细胞检测阳性率分别为:(54.65±3.28)%、(17.42±6.78)%、(6.27±5.29)%、(3.02±2.47)%和(3.28±2.79)%,而用TNF-α诱导K562-DC成熟,各表面分子的阳性率分别为(69.52±8.68)%、(58.97±4.25)%、(63.84±7.32)%、(72.69±6.23)%和(71.46±4.96)%,均显著高于未成熟DC(P 0.01~0.05)。经SOCS1 siRNA转染成熟DC 24 h后,上述分子的阳性率分别为(67.17±9.53)%、(59.46±5.17)%、(65.72±6.58)%、(71.47±5.68)%和(87.92±3.94)%。其中CD83的阳性率显著高于未转染DC组(P 0.05)。 8) TNF-α刺激成熟的K562-DCs其刺激T细胞增殖的能力明显高于未成熟DC,且随着DC: T细胞比例的增加,刺激能力增强,以效靶比1: 5时刺激作用最为显著(效靶比1:20及1:5时均有P 0.01)。SOCS1 siRNA转染后K562-DCs刺激T细胞增殖的能力较之scramble siRNA后的K562-DCs强,二者比较有显著性差异(P 0.05)。 9)经TNF-α刺激成熟的K562-DCs其刺激外周血T细胞对K562细胞的杀伤率明显增加,在效靶比为5~20:1时杀伤率增加尤为明显(成熟DC vs.未成熟DC, P 0.01)。采用SOCS1 siRNA转染的K562-DCs刺激外周血T细胞可使T细胞对K562细胞的杀伤率进一步增加(P 0.05),其对K562细胞的杀伤率的影响强度与效靶比成正比。 10)成熟的K562-DCs刺激后,外周血T细胞分泌IFN-γ的数目增加(成熟DC vs.未成熟DC,P 0.01)。而采用SOCS1 siRNA转染的K562-DCs刺激外周血T细胞可进一步增加IFN-γ的T细胞数目(P 0.05)。 结论 1)从PBMC来源的、负载全肿瘤抗原的DC经细胞因子诱导成熟后,可刺激T细胞增殖,并增强其特异性杀伤肿瘤细胞的能力。 2) SOCS1 siRNA转染可有效抑制DC内SOCS1表达,可突破内源性抑制机制的制约,使成熟DC诱导出更强的反应,表现为T细胞增殖反应增加及其对K562细胞的杀伤能力增强。 综上所述,我们的结果提示,负载全肿瘤抗原的DC可能是治疗儿童恶性肿瘤的一种有效方法,具有潜在的临床应用价值。而采用SOCS1 siRNA抑制SOCS1,增强CTL对肿瘤细胞的杀伤效应,可能是一种增强获得性免疫的重要策略。
[Abstract]:Research background
Malignant tumor in children is now a common disease which is harmful to children's life. Like adult malignant tumors, the treatment of malignant tumor in children is currently treated with three traditional treatments, such as surgery, chemotherapy and radiotherapy. The pharmacokinetics and pharmacodynamics of children are different from those of adults. Side effects, which affect the growth and development of the patients and the quality of life of the long-term survivors, are associated with a high risk of high metastasis and recurrence. Therefore, there is an urgent need for a efficient and safe method for the treatment of malignant tumors in children.
Immunotherapy based on dendritic cells (DCs) is becoming one of the most important methods for the treatment of cancer patients. Under normal conditions, DC exists in the form of immature DC. The ability of immature DC to activate T lymphocytes is weak. Only mature DC can stimulate the initial T drenched cells to activate the T cells and stimulate the immune response. It has become a key and difficult problem for the study of the high efficient preparation of DC induced by high efficiency and the enhancement of DC induced anti-tumor immunity. The immune killing of the body against its tumor related antigen is restricted by endogenous inhibition mechanism, which often leads to reduced killing effect. Therefore, the immunotherapy for many tumors is difficult to obtain. In recent years, it has been found that cytokine signaling inhibitory protein (SOCS1) is an endogenous inhibitory molecule that regulates T cell activation and acquired immunity in DC, and.SOCS1 inhibits JAK activity in T cells and other immune cells, and inhibits the signal transduction of a variety of cytokines, such as IFN- gamma, and is the regulation of DC resistance. It is rarely reported that suppressing the expression of SOCS1 in DC can enhance the ability of DC to kill malignant tumor cells in children.
Therefore, the purpose of this study is to:
1) explore the feasibility of obtaining a large number of mature DC from peripheral blood mononuclear cells (PBMC) and the strategy to stimulate DC maturation.
2) to observe the effect of DC loaded with whole tumor antigen on T cells proliferation and killing the ability of autologous and xenogenic solid tumor nasopharynx cells.
3) to explore the effect of SOCS1 expression by siRNA technique to observe the anti tumor immunity of DC, and to provide experimental basis and theoretical basis for improving the curative effect of DC clinical immunotherapy for non solid tumor leukemia in children.
Experimental method
1) tumor cell culture: tissue biopsy was used to culture.CNE-2Z and K562 cells.
2) preparation of whole tumor antigen: repeated freezing and thawing and irradiation with 60Co gamma rays (dose 25Gy).
3) in vitro induction and amplification of DC: using PBMC separation method, adding cytokine GM-CSF, IL-4 culture, culture and adding all tumor antigen for third days, and adding TNF- to TNF- to stimulate the maturation of DC in seventh days.
4) morphological identification of DC: inverted microscope, scanning electron microscope and projection electron microscope respectively.
5) DC surface antigen and maturity detection: flow cytometry.
6) the proliferation ability of T cells stimulated by tumor DC: the tetrazolium blue test (MTT).
7) in vitro killing activity of CTL activated by tumor DC: MTT method.
8) the ability of CTL activated IFN- gamma in tumor DC activation: ELISPOT test.
9) SOCS1 expression in DC: mRNA and protein expression was measured by RT-PCR and Western blot respectively.
experimental result
1) morphological identification of DC: typical dendritic dendrites on cell surface can be seen under inverted microscope and electron microscope.
2) DC (immature DC) loaded with total tumor antigen for 5 days, the positive rates of cell surface marker molecules HLA-DR, CD1a, CD80, CD83 and CD86 were respectively (60.86 + 5.42)%, (21.84 + 2.52)%, (5.49 + 6.32)%, (6.82 + 1.24)% and (1.24 + 0.90)%, while DC (mature DC) loaded with TNF- alpha stimulated total tumor antigen (mature DC), the above cells The positive rates of surface molecules were (86.14 + 8.32)%, (78.28 + 11.42)%, (78.24 + 12.64)%, (67.25 + 14.24)% and (85.26 + 9.14)%, and the expression of each surface molecule was significantly higher than that of unmature DC (P 0.01~0.05).
3) as the proportion of DC:T cells increased from 1:100 to 1:5, the stimulation index of the proliferation of T cells in each group increased. The stimulation index of DC stimulated T cells with full tumor antigen was higher than that of the unloaded total tumor antigen.
4) the DC activated CTL, which is loaded with all tumor antigen, has a killing activity to both autologous or allogenic nasopharyngeal carcinoma cells, and the killing rate of the nasopharyngeal carcinoma cells is proportional to the target ratio.
5) the number of cells secreting IFN- gamma in T cells incubated with DC loaded with whole tumor antigen was significantly higher than that in DC group and T cell group without P (P? 0.05).
6) after the addition of TNF- alpha (1000 U/mL) to the maturation of DC for seventh days, the expression of SOCS1 mRNA and protein in K562-DC increased. The expression of mature DC 24 could be significantly reduced via SOCS1 siRNA (SOCS1 siRNA1 and siRNA2) transfected with mature DC 24.
7) DC (immature DC) loaded with total tumor antigen for 5 days, and the positive rates of cell surface marker molecules HLA-DR, CD1a, CD80, CD86 and CD83 were respectively (54.65 + 3.28)%, (17.42 + 6.78)%, (6.27 + 5.29)%, (3.02 + 2.47)% and 3.28 + 2.79)%, and the positive rates of each surface molecule were respectively (69.52) using TNF- alpha. (+ 8.68)%, (58.97 + 4.25)%, (63.84 + 7.32)%, (72.69 + 6.23)% and (71.46 + 4.96)%, significantly higher than unmature DC (P 0.01~0.05). After SOCS1 siRNA transfected to mature DC 24 h, the positive rates of these molecules were (67.17 + 9.53)%, (59.46 +%)%, (72.69%)% and (72.69)%, respectively. The positive rate of CD83 was significantly higher than that of unconverted. DC group (P 0.05).
8) the ability of TNF- alpha to stimulate mature K562-DCs to stimulate T cell proliferation is significantly higher than that of immature DC, and with the increase of DC: T cell ratio, the stimulation ability is enhanced, and the stimulation effect is the most significant when the target target ratio 1: 5 is most significant (the target ratio at 1:20 and 1:5 is P 0.01).SOCS1 siRNA after the.SOCS1 siRNA transfection. After K562-DCs, there was a significant difference between the two groups (P 0.05).
9) the killing rate of T cells in peripheral blood stimulated by K562-DCs stimulated by TNF- alpha was significantly increased in K562 cells, especially when the target target ratio was 5~20:1 (mature DC vs. immature DC, P 0.01). SOCS1 siRNA transfected K562-DCs stimulated peripheral blood cells to further increase the killing rate of peripheral blood cells (0 5) the intensity of the killing effect on K562 cells is directly proportional to the target ratio.
10) after the mature K562-DCs stimulation, the number of IFN- gamma secreted in peripheral blood T cells increased (mature DC vs. immature DC, P 0.01), while SOCS1 siRNA transfected K562-DCs stimulated the number of IFN- gamma cells to increase the number of IFN- gamma cells (0.05).
conclusion
1) from PBMC, DC loaded with whole tumor antigen can induce T cells to proliferate and enhance their ability to specifically kill tumor cells after induced maturation by cytokines.
2) SOCS1 siRNA transfection can effectively inhibit the expression of SOCS1 in DC. It can break through the restriction of endogenous inhibition mechanism and induce the mature DC to induce a stronger reaction, which shows the increase of T cell proliferation and the enhancement of the killing ability to K562 cells.
To sum up, our results suggest that DC loaded with total tumor antigen may be an effective method for the treatment of malignant tumor in children, and it is of potential clinical value. The use of SOCS1 siRNA to inhibit SOCS1 and enhance the killing effect of CTL on tumor cells may be an important strategy for enhancing acquired immunity.

【学位授予单位】:第四军医大学
【学位级别】:博士
【学位授予年份】:2010
【分类号】:R392

【相似文献】

相关期刊论文 前10条

1 ;肿瘤免疫学与血清学[J];国外科技资料目录(医药卫生);1999年01期

2 禄韶英;ELISPOT技术在抗肿瘤疫苗研究中的应用[J];中国肿瘤生物治疗杂志;2002年01期

3 侯良;耿排力;;基因修饰树突状细胞瘤苗抗肿瘤研究进展[J];青海医学院学报;2005年04期

4 邹玉红;崔志芳;韩秋霞;闫华晓;叶欣;;高强度聚焦超声制备肿瘤抗原致敏树突状细胞[J];中国组织工程研究与临床康复;2007年33期

5 王娟;杨朝群;;CD4~+CD25~+调节性T细胞与肿瘤的研究进展[J];农垦医学;2007年05期

6 张健;赵珍谊;陈阳;石虹;任林广;夏风琴;;抗原诱导的人脐血CTL细胞活性的实验研究[J];中国实验诊断学;2008年07期

7 李官成;童永清;;自身抗体——肿瘤新的早期诊断标志物[J];西安交通大学学报(医学版);2009年04期

8 徐学琴;牛乐;孙春阳;闫国立;;SEREX方法在肿瘤相关抗原筛选中的应用[J];中国西部科技;2009年27期

9 张铭忱;张键;;抗原诱导的人CTL细胞活性的实验研究[J];吉林医学;2009年23期

10 张行炜;黄辉;邵益森;;肿瘤抗原NY-ESO-1的研究现状[J];南昌大学学报(医学版);2010年07期

相关会议论文 前10条

1 陈慰峰;;肝癌肿瘤抗原研究及肝癌患者对肿瘤抗原的免疫应答分析[A];中国免疫学会第四届学术大会会议议程及论文摘要集[C];2002年

2 肖冰;刘宇虎;张振书;;大肠癌相关抗原谱的SEREX筛选[A];中国中西医结合学会第十五次全国消化系统疾病学术研讨会论文汇编[C];2003年

3 储以微;李昂;熊思东;;基于异种同源肿瘤抗原的肿瘤基因疫苗研究[A];2005全国第二届核酸疫苗研讨会论文集[C];2005年

4 席泓;朱一蓓;古涛;李文新;顾宗江;李文香;张学光;;体外活化扩增肿瘤抗原特异性CTL优化方案的研究[A];中国免疫学会第四届学术大会会议议程及论文摘要集[C];2002年

5 郝思国;王椿;;Exosome一个新型的抗肿瘤疫苗[A];第12届全国实验血液学会议论文摘要[C];2009年

6 梁安民;罗小玲;谢裕安;吴继宁;匡志鹏;;肿瘤抗原致敏的树突状细胞诱导的特异性抗肿瘤作用[A];第七届广西肿瘤学术年会论文汇编[C];2003年

7 余晓玲;;肿瘤相关抗原HAb18G/CD147分子结构与免疫功能研究[A];第六届全国免疫学学术大会论文集[C];2008年

8 李寿春;;负载肿瘤抗原树突状细胞诱导的CIK细胞对自身肿瘤作用观察[A];第十五届全国泌尿外科学术会议论文集[C];2008年

9 罗荣城;;肿瘤分子靶向治疗的临床路径[A];山东省第七届肿瘤化疗会议暨首届“CSCO—山东”肿瘤论坛论文集[C];2008年

10 郝思国;王椿;;负载肿瘤抗原的胞外体靶向结合的树突状细胞能诱导高效CTL应答及抗肿瘤免疫[A];第12届全国实验血液学会议论文摘要[C];2009年

相关重要报纸文章 前10条

1 苏建华 王坤;樊代明从战士到院士[N];西安日报;2002年

2 ;映日荷花别样红[N];中国医药报;2004年

3 记者 马璇 实习生 杨蓓蓓;深大创新药物研究所成立[N];深圳特区报;2009年

4 本报记者 付东红 通讯员 张君;陈慰峰 一生奉献犹嫌不够[N];健康报;2009年

5 王坤;“科学只承认第一”[N];大众卫生报;2002年

6 记者 范京蓉;深企开发癌症疫苗[N];深圳特区报;2009年

7 本报记者 王海蕴;癌症,,我们到底应怎样对待它[N];中国消费者报;2002年

8 周萍;肿瘤与肥胖有关[N];中国医药报;2001年

9 靖九江;肿瘤生物治疗 厚积薄发 承载希望[N];中国医药报;2004年

10 娄彦艳 魏于全;肿瘤基因与分子疫苗面面观[N];医药经济报;2001年

相关博士学位论文 前10条

1 豆玉凤;负载全肿瘤抗原及SOCS1siRNA转染的树突状细胞杀伤儿童恶性肿瘤细胞的研究[D];第四军医大学;2010年

2 崔晓波;鼻咽癌肿瘤抗原的血清学筛选及表达研究[D];四川大学;2005年

3 石永玉;筛选和鉴定人原发性肝癌表达的肿瘤相关抗原的研究[D];山东大学;2004年

4 董海龙;肿瘤抗原MAGE-n HLA-A2限制性CTL表位的预测及鉴定[D];中国人民解放军第四军医大学;2003年

5 李玉;卵巢癌相关抗原的异种血清学筛选[D];四川大学;2005年

6 王建东;卵巢癌相关肿瘤抗原新基因的研究[D];中国协和医科大学;2002年

7 陈一鸣;T淋巴细胞识别自体慢性髓系白血病细胞肿瘤抗原的研究[D];中国协和医科大学;1996年

8 孙伟红;人磷脂酰乙醇胺结合蛋白4(hPEBP4)的HLA-A~*0201限制性CD8~+ CTL表位的鉴定及其功能研究[D];第二军医大学;2006年

9 赵泽国;结肠癌转移、复发免疫防治的实验研究[D];中国协和医科大学;2001年

10 丁世华;特异性抗肝癌单链抗体scFv 4-16靶抗原的筛选、鉴定及意义[D];暨南大学;2008年

相关硕士学位论文 前10条

1 郭玉琳;宫颈癌细胞cDNA表达文库的免疫血清学筛选[D];四川大学;2005年

2 宋鑫;应用血清蛋白组学方法筛选和鉴定鼻咽癌肿瘤抗原[D];四川大学;2005年

3 马际尧;基因枪介导pVAX1-2PFcGB融合肿瘤抗原基因疫苗小鼠体内抑瘤活性研究[D];中国人民解放军军医进修学院;2008年

4 孙涛;人食管癌Eca-109细胞膜抗原筛选的初步研究[D];郑州大学;2003年

5 唐丽华;U_(14)-CBE脂质体瘤苗诱导的细胞和体液免疫应答[D];江西医学院;2005年

6 柳斌;应用蛋白质组学技术筛选和鉴定卵巢癌肿瘤抗原[D];四川大学;2005年

7 陈翔;肿瘤细胞培养上清对树突状细胞免疫功能的影响[D];第一军医大学;2005年

8 袁欣;肿瘤抗原负载DC介导特异性免疫应答的实验研究[D];吉林大学;2007年

9 张秀敏;生物信息学在肿瘤抗原MAGE-A亚家族CTL表位预测中的应用及多表位诱导免疫活性研究[D];第四军医大学;2005年

10 赵英芳;人源性食管鳞癌cDNA文库的构建及鉴定[D];山西医科大学;2007年



本文编号:1871996

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/shiyanyixue/1871996.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4c2fe***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com