前床突和周围结构的显微解剖研究
[Abstract]:objective
The anterior bed process is the demarcation point of the anterior and middle cranial fossa, and it is a protective sign of the optic nerve and the lateral of the internal carotid artery. Therefore, the anterior bed process has an important anatomical significance. Its position is important. It is a hot and difficult point to consider how to get the operation space by grinding the anterior bed process for the lesions in this area. The data provided the anatomical basis for the microsurgical approach to the clinical orbital fissure and the cavernous sinus regional lesion. The anatomical relationship between the anterior bed process and the surrounding structure was determined by the anatomy of the corpse head under the microscope, and the anatomical relationships of the highly individualized bone structure, nerve, blood vessel, and dura were divided into the anatomical relationships of the highly individualized bone, nerve, blood vessel and dura. Statistics, I designed this study.
Method
10 cases of adult cadaver head wet specimens of formalin were fully fixed in 20 sides. They were unable to determine the age and sex, to divide the veins in the more accurate area, to maintain the normal blood vessel and to improve the quality of the shooting. All the wet specimens of the head were filled with latex with red dye in the arterial system, and the blue dye was mixed with the venous system. Latex. Bleached Chinese adult cranial diaphysis specimens of 10 cases, 20 sides, for observation and measurement of bone structure. Select the most representative frontal and temporal craniofacial pterional approach for the anterior lateral lateral operation. Under the operation microscope, the surgical approach is anatomically dissected and the anatomical structure is measured and taken accurately. The data are all through SPSS software. Processing, in the form of an average range of measured values.
Result
1, APC anterior and inferior in the upper part of the orbital fissure, anterior and sphenoid wing, anterior to the posterior of the optic canal and the optic column, the internal carotid artery through the internal carotid artery, and the cavernous sinus on the outer side. The length, width and thickness are 9.80 + 1.22 (7.52-12.48) mm, 12.57 + 2.41 (8.67-17.25) mm and 5.74 + 1.39 (3.10-9.97). After grinding, the lower edge of the cavernous sinus should be kept close to the cranial nerves.
2, before and after anterior resection, the average standard deviation of the measured values of the left and right sides was as follows. The optic nerve length was 9.56 + 1.85mm and 21.37 + 2.94mm; the length of the internal carotid artery was 9.97 + 2.06mm and 13.82 + 2.53mm; the width of the internal carotid triangle (OCT) of the optic nerve: 3.67 + 1.10mm and 12.54 + 2.37mm; OCT length: 9.66 + 2.39mm and 22.09 + 23.32mm.
3, the bed gap is a conical cavity formed by grinding the anterior bed process. The tip points to the rear, and the adjacent tissue is roughly the same as that of the anterior bed process. The space size is closely related to the structure of the front and surrounding tissue, the size of the range and the size of the edge, of which the total internal carotid artery (ICA) type is the largest and can affect the microscopical microscopy. The operation was 8.12 + 2.54 (4.20-14.23) mm, 11.54 + 3.21 (4.11-16.52) mm, 5.32 + 1.24 (2.23-7.52) mm, 2.33 + 0.84 (0.52-4.50) mm at the top, and 8.22 + 2.51 (5.32-16.23) mm. in the root.
4, the optic column is a columnar structure separating the optic canal from the supraorbital fissure.
5, on the nerve canal, the length of the lower wall was 8.20 + 1.23 (6.06-10.28) mm, 5.95 + 2.96 (1.42-12.62) mm, and the distance from the cranial mouth was 12.64 + 2.62 (8.00-17.16) mm, 23.71 + 3.55 (17.14-29.30) mm., respectively.
6, the orbital fissure is divided into the outer, middle and lower three areas. The cranial nerve and the adjacent area of the blood vessels are relatively constant. All the nerves and the eye veins that go through the cavernous sinus are split into the orbit through the orbit, of which the lower oculomotor nerve is the thickest and the lacrimal gland is the finest.
7, the segment of the internal carotid artery was located between the distal and proximal dural rings with a wedge-shaped appearance, the front and the optic column, the medial and the anterior part of the sphenoid carotid artery, the distal and proximal rings of the.ICA bed adjacent to the superior lateral and anterior protrusion, and the interspace between the medial vascular walls of the ICA bed and the periosteum, and the internal carotid artery bed process should be The internal structure of the cavernous sinus.
conclusion
1, the narrow space around the area around the bed, the most important, most complex and densest vessels of the skull base, the cranial nerves and other tissue structures, closely linked and difficult to separate.
2, the clearance of the bed process which was formed after the anterior bed process increased the operation space, increased the exposure of the optic nerve and the length of the OCT by two times, and increased the width of the OCT by 3~4 times, increased the exposure of the optic nerve, ICA, expanded the OCT, and had several important advantages in the microsurgery, including: (1) early localization and exposure of the optic nerve. ICA; (2) the activity and decompression of the optic nerve and ICA can prevent the neurovascular injury in the operation; (3) the surgical approach to the difficult position is improved, which is convenient for the more complete resection of the tumor.
3, most of the internal carotid artery segment should belong to the structure of the cavernous sinus. During the operation, we must expose the structure of the internal carotid artery, and so on.
4, the medial, central or lateral approach should be chosen according to the lesion location and the range of invasion to obtain the maximum exposure and minimal damage when the craniotomy approach is used to treat the orbital apex lesions.
5, when the optic canal is decompressed, the middle and anterior segment of optic canal and optic nerve sheath should be opened.
【学位授予单位】:中国医科大学
【学位级别】:硕士
【学位授予年份】:2009
【分类号】:R322
【相似文献】
相关会议论文 前10条
1 刘军;刘树伟;衡雪源;费昶;韦有义;刘焕亭;张忠和;;床突间隙的显微和断层解剖研究[A];中国解剖学会2011年年会论文文摘汇编[C];2011年
2 刘小丘;赵建农;;前床突和周围结构的显微解剖及其临床意义(综述)[A];海南省第二届肿瘤学术会议论文集[C];2005年
3 章文斌;刘翔;赵鹏来;张玉海;邹元杰;刘宏毅;;翼点硬膜外入路切除前床突脑膜瘤[A];中华医学会神经外科学分会第九次学术会议论文汇编[C];2010年
4 卢亦成;;前床突脑膜瘤的显微外科手术治疗[A];中国医师协会神经外科医师分会首届全国代表大会论文汇编[C];2005年
5 刘伟;杨廷舰;张贺;;经翼点入路显微切除前床突脑膜瘤[A];中国医师协会神经外科医师分会第二届全国代表大会论文汇编[C];2007年
6 刘军;刘树伟;费昶;衡雪源;韦有义;张忠和;张建;于建军;;鞍区的冠状断层面解剖与三维重建[A];中华医学会神经外科学分会第九次学术会议论文汇编[C];2010年
7 于加省;雷霆;陈劲草;何跃;陈坚;李龄;;颈内动脉床突旁动脉瘤的血管内治疗[A];中国医师协会神经外科医师分会第四届全国代表大会论文汇编[C];2009年
8 孙正辉;许百男;武琛;姜金利;周定标;余新光;李保民;;个性化手术治疗海绵窦和床突旁大型和巨大型动脉瘤(附75例报告)[A];中华医学会神经外科学分会第九次学术会议论文汇编[C];2010年
9 祝向东;龚江标;傅伟明;沈宏;黄欣;朱永坚;李立;;翼点入路视神经管减压术治疗外伤性视神经损伤[A];2006年浙江省神经外科学术会议论文汇编[C];2006年
10 郭付有;宋来君;保建基;孙红卫;魏新亭;;96例颅底脑膜瘤显微手术的临床研究[A];中国医师协会神经外科医师分会第二届全国代表大会论文汇编[C];2007年
相关重要报纸文章 前3条
1 陈汉桥;发现一个“间隙” 突破一个“禁区”[N];中国医药报;2003年
2 曹勇 华涛 孙辉;颅脑肿瘤治疗三大进展[N];健康报;2006年
3 王振岭 印素萍 任素丽;我国神经介入治疗迈上新的台阶[N];中国医药报;2003年
相关博士学位论文 前9条
1 邵君飞;神经导航下经硬膜间腔岩尖入路显微外科解剖学研究[D];苏州大学;2003年
2 陶存山;前外侧颅底手术硬脑膜外人路相关的显微解剖研究[D];第二军医大学;2003年
3 胡凡;天幕裂孔区显微解剖及手术入路研究[D];复旦大学;2003年
4 简志宏;颅底内外沟通区的显微外科解剖[D];中南大学;2011年
5 窦以河;海绵窦显微解剖与海绵窦海绵状血管瘤的显微手术治疗[D];山东大学;2008年
6 石小峰;锁孔与微创手术入路的解剖学和临床研究[D];南方医科大学;2007年
7 陆云涛;经蝶海绵窦内侧壁相关解剖和手术学研究[D];第一军医大学;2007年
8 张荣伟;扩大经蝶入路治疗海绵窦侵袭性垂体腺瘤的研究[D];第三军医大学;2007年
9 罗俊生;颅底中央部前方手术入路的显微解剖学研究[D];中国医科大学;2004年
相关硕士学位论文 前10条
1 涂斌锋;前床突及床突间隙的应用解剖学研究[D];南昌大学;2012年
2 马全锋;经眶颧入路对前床突—眶尖区的显微解剖学研究[D];天津医科大学;2010年
3 董浩;前床突及相关区域显微解剖研究[D];山东大学;2005年
4 李志鹏;前床突和周围结构的显微解剖研究[D];中国医科大学;2009年
5 韩奖励;CT成像模拟眶上锁孔入路磨除前床突前后颈内动脉床突上段的显露[D];中南大学;2010年
6 尹嘉;床突间隙与周围结构的显微解剖学研究及临床应用[D];第二军医大学;2001年
7 刘锦峰;海绵窦的应用解剖学研究[D];汕头大学;2007年
8 梁建涛;前床突旁区及海绵窦外侧壁的显微解剖研究[D];山西医科大学;2003年
9 张小军;蝶岩斜区的显微外科解剖学研究[D];南京医科大学;2010年
10 谭秋丰;头颅CT片个人识别研究[D];四川大学;2007年
,本文编号:2148754
本文链接:https://www.wllwen.com/yixuelunwen/shiyanyixue/2148754.html