转录调节因子ATF4对破骨细胞分化的调节
[Abstract]:Bone is a constantly updated organ with multiple functions, including regulating calcium balance, supporting the soft tissue to provide hematopoiesis, and so on. These functions are accomplished through the regeneration of bone tissue, that is, remolding. Osteoclasts are the only multinucleated cells with bone absorptive capacity. Osteoclasts are derived from directional myeloid precursor cells. Cells and their secreted factors can regulate the differentiation and function of osteoclasts, especially bone marrow stromal cells and their secreted M-CSF and RANKL. osteolysis, which are important clinical problems in a variety of pathological injuries, such as cancer bone metastases, rheumatoid arthritis, osteoporosis and Paget's bone disease. Effective methods of inhibiting the excessive dissolving of bone or promoting bone formation in order to prevent or reduce the occurrence of osteoporosis and improve the quality of life of the patient. In the past ten years, there are many important breakthroughs in the analysis of osteoclast formation, the differentiation process and function of osteoclast are becoming more and more clear. Many factors play a heavy role in this process. The role of M-CSF, RANKL, OPG, PU.1 and MITF. Activation of transcription factor 4 (ATF4) is an important transcription factor. Through site directed mutagenesis, the earliest discovery of ATF4 is essential to the formation of eye lens fibers. More and more studies have shown that it plays an important role in the process of osteoblast differentiation and bone formation. Some studies have shown that ATF4 can indirectly regulate the differentiation and bone resorption of osteoclasts by affecting the amount of RANKL produced by osteoblasts. However, there has been no study on the differentiation of osteoclasts directly regulated by ATF4. We think that ATF4 can directly affect the differentiation of osteoclast.
First, we established the expression of ATF4 in the osteoclast cell line by the method of Western blot and immunohistochemical staining, and found the form of phosphorylation by the method of phosphatase treatment. Then we used the method of function loss and acquisition to establish the direct of this factor in the formation of osteoclast. In the bone of Atf4-/- mice, the proportion of the Trap positive region was significantly reduced and the signal intensity was weakened; in the differentiation experiment in vitro, the number of MNCs (more than three nuclei) formed by Atf4-/-BMM cells was also significantly reduced. And by the bone dissolving absorption experiment (Pitassay), it is known that Atf4 in vitro The number of bone resorption sags of osteoclasts formed in -/-BMM also decreased significantly, but the ratio of the number of bone resorption depression to the number of MNCs did not change significantly, indicating that the bone resorption capacity of osteoclasts was not significantly changed after ATF4 knockout. Under the drive of osteoclast specific Trap promoter, ATF4 was genetically modified in osteoclasts. At the time of arrival, the transgenic mice showed obvious osteopenia, the level of serum CTX increased significantly, and the formation of osteoclasts increased significantly in both in vivo and in vitro, and the level of gene expression related to osteoclast differentiation, both in protein level and in mRNA level, was significantly up-regulated.
Further studies have found that the number of colonies of GM-CFU formed by bone marrow cells from Atf4-/- mice is also significantly less than that in the wild type control group, and GM-CFU is the most primitive hematopoietic progenitor cells that have the ability to differentiate into osteoclasts.
To co culture Atf4-/-BMM cells with wild type osteoblasts or to stimulate their differentiation with high concentration of RANKL, the signal to the defect to osteoclast differentiation,.RANKL, is transmitted by its receptor RANK. We found that RANK in Atf4-/-BMM cells through immunohistochemical staining and immunological trace methods. The expression was significantly reduced and its mRNA level could not be raised by M-CSF. In addition, the activation of RANKL on multiple MAPK signaling pathways was also regulated by ATF4. In the absence of ATF4, the activation ability of RANKL to the three MAPK pathway was significantly decreased, while the NF-kB pathway was not affected by the PI3K/Akt path. There is no obvious adjustment.
So far, NFATcl is the most critical gene for osteoclast differentiation. The lack of ATF4 in both in vivo and in vitro leads to a significant decline in the expression level of NFATcl. Using retrovirus as the carrier, NFATcl is overexpressed in ATF4WT and KO BMM, and the positive MNCs of Trap can be increased in a dose-dependent manner. We use adenosis. As a carrier, ATF4 is overexpressed in BMM cells, and it is found that ATF4 can increase the expression level of NFATcl protein in a dose dependent manner. In vitro, ATF4 can be combined with NFATcl promoter and can activate the NFATcl (?) spoon promoter in a dose-dependent manner. In addition, ATF4 can be found by ChIP assay method and NFATcl near promoter. In BMM cells, the protein level of ATF4 is regulated by the M-CSF and the PI3K/AKT pathway. In the absence of M-CSF, the protein level of ATF4 is significantly reduced in a time dependent manner, and M-CSF can block this process of.M-CSF by PI3K/Akt, which can be blocked by M-CSF. The inhibitor LY294002 of the diameter is blocked, and with the increase of the concentration of LY2094002, the differentiation of BMM cells to the osteoclast is also corresponding to the lack of.ATF4, which can cause the differentiation of BMM to migrate from the osteoclast line to the macrophage system, which leads to the increase of the number of macrophages. Our research results show that ATF4 is regulating the osteoclast differentiation side. The surface has important internal effects, which may be used as a therapeutic target for osteoclast related bone diseases.
【学位授予单位】:天津医科大学
【学位级别】:博士
【学位授予年份】:2010
【分类号】:R392.1
【相似文献】
相关期刊论文 前10条
1 ;控制破骨细胞分化的机制获新发现[J];中华中医药学刊;2008年09期
2 张晔,吴小涛;破骨细胞分化中的信号环路与调节[J];中国骨质疏松杂志;2001年03期
3 袁成良,金小岚;破骨细胞分化成熟调节的分子机理研究进展[J];中国病理生理杂志;2003年03期
4 王松;沈霖;;破骨细胞分化、形成过程中表现型特点[J];武汉体育学院学报;2007年04期
5 李忠武,章明放;白细胞介素对破骨细胞分化与功能调控研究的进展[J];中国骨质疏松杂志;2003年01期
6 孟祥阁;;破骨细胞分化的信号转导系统[J];科协论坛(下半月);2009年01期
7 陈莉;Bronwen Evans;Daniel Aeschlimann;;白介素-23对破骨细胞分化及功能直接调节作用的实验研究[J];北京口腔医学;2010年06期
8 张晔;;破骨细胞分化过程中的信号传导[J];国外医学(老年医学分册);2001年02期
9 刘瑞;戴晨琳;郑纺;郭善一;王宝利;邱明才;;破骨细胞抑制性凝集素胞外段可抑制骨髓干细胞向破骨细胞分化[J];天津医药;2010年08期
10 张超;孙新华;;物理因素对破骨细胞分化及功能的影响[J];中国骨与关节外科;2012年03期
相关会议论文 前10条
1 陈晓;朱国英;顾淑珠;邱晶;;低剂量镉暴露刺激破骨细胞分化[A];中华医学会第六次全国骨质疏松和骨矿盐疾病学术会议暨中华医学会骨质疏松和骨矿盐疾病分会成立十周年论文汇编[C];2011年
2 王军;赵志河;罗颂椒;;张应力刺激对成骨细胞调控破骨细胞分化成熟效应的影响[A];第四军医大学口腔医院2004第七届全国口腔正畸学术会议论文汇编[C];2004年
3 贾鹏;徐又佳;;铁离子对破骨细胞分化及骨吸收的影响[A];中华医学会第六次全国骨质疏松和骨矿盐疾病学术会议暨中华医学会骨质疏松和骨矿盐疾病分会成立十周年论文汇编[C];2011年
4 郭勇;郭春;张西正;闫玉仙;李瑞欣;张春秋;王亮;;相同机械应力对成骨细胞分化和破骨细胞分化的影响[A];天津市生物医学工程学会第30次学术年会暨生物医学工程前沿科学研讨会论文集[C];2010年
5 许多荣;苏畅;邹外一;;RANK可能通过新的信号途径调节破骨细胞分化[A];第12届全国实验血液学会议论文摘要[C];2009年
6 赵国阳;徐又佳;狄东华;;高铁环境对成骨细胞、破骨细胞分化的影响[A];中华医学会第七次全国骨质疏松和骨矿盐疾病学术会议论文汇编[C];2013年
7 许多荣;许辉茹;王荷花;李娟;;不同浓度的地塞米松体外对人的成骨细胞及破骨细胞分化的影响[A];第13届全国实验血液学会议论文摘要[C];2011年
8 Ke Gan;Wenfeng Tan;Miaojia Zhang;;THE ROLE OF IGURATIMOD(T-614) IN OSTEOCLAST DIFFERENTIATION AND BONE RESORPTION[A];中华医学会第五次中青年骨质疏松和骨矿盐疾病学术会议论文集[C];2013年
9 韦秀宁;;类风湿关节炎滑膜成纤维细胞通过RANKL促进破骨细胞分化和活化[A];中华医学会第六次全国骨质疏松和骨矿盐疾病学术会议暨中华医学会骨质疏松和骨矿盐疾病分会成立十周年论文汇编[C];2011年
10 何成;楼觉人;;毕赤酵母表达RANKL-HBsAg作为治疗性骨质疏松症疫苗的研究[A];第五次全国免疫诊断暨疫苗学术研讨会论文汇编[C];2011年
相关重要报纸文章 前1条
1 记者 杜华斌;科学家发现RANKL蛋白可“召唤”癌细胞转移[N];科技日报;2006年
相关博士学位论文 前10条
1 鲁兴;整合素β1在细胞因子诱导的破骨细胞分化中的作用及其机制[D];山东大学;2017年
2 王洪凯;喹硫平抑制破骨细胞分化的作用观察及机制研究[D];第三军医大学;2015年
3 宋瑞龙;OPG对破骨细胞分化过程中细胞骨架的影响及其分子机理[D];扬州大学;2014年
4 熊琦;蛋白质组学在破骨细胞分化形成机制研究中的应用[D];中国人民解放军医学院;2016年
5 杜少华;miR-146a调控破骨细胞分化以及在老年性骨质疏松症中的作用机制研究[D];浙江大学;2016年
6 魏明;MOTS-c对OVX小鼠脂代谢异常和骨丢失的保护效能与机制研究[D];第四军医大学;2016年
7 许琰;新型抗氧化蛋白PAMM及其在破骨细胞分化和雌激素缺乏所致骨质疏松中的作用[D];昆明医科大学;2016年
8 王晨;重组腺病毒介导siCXCR2抑制磨损颗粒诱导破骨细胞分化成熟的作用[D];重庆医科大学;2016年
9 王惠宁;MiR-20a对破骨细胞分化的影响及其作用机制的研究[D];山东大学;2017年
10 曹惠玲;转录调节因子ATF4对破骨细胞分化的调节[D];天津医科大学;2010年
相关硕士学位论文 前10条
1 常亮;C-2,,C-3并吡唑白桦脂酸水溶性衍生物的设计、合成及其抑制破骨细胞分化成熟活性研究[D];华东师范大学;2014年
2 正王宇;瘦素通过抑制PPARγ的表达抑制RAW264.7细胞向破骨细胞分化[D];重庆医科大学;2015年
3 高倩;OPG对破骨细胞分化的影响及其Rho信号转导机制[D];扬州大学;2015年
4 朱云;小鼠MafB过表达对单核细胞向破骨细胞分化的影响[D];重庆医科大学;2015年
5 王静;NRAGE对破骨细胞分化的调控作用及机制研究[D];南京师范大学;2013年
6 彭秋月;雷公藤红素通过调控选择素-P的表达抑制破骨细胞分化的研究[D];南京医科大学;2016年
7 杨五洲;MiR-216b靶向抑制ABCG1表达对破骨细胞分化、融合及生存的影响[D];南华大学;2016年
8 黄锦平;胆汁酸膜受体TGR5通过激活cAMP-AMPK信号通路调控破骨细胞分化和功能[D];华东师范大学;2016年
9 王岩;TGF-β及其受体信号通路在氟调控破骨细胞分化中的作用[D];吉林大学;2017年
10 徐锋;过表达Klotho抑制RAW264.7细胞向破骨细胞分化[D];重庆医科大学;2017年
本文编号:2164891
本文链接:https://www.wllwen.com/yixuelunwen/shiyanyixue/2164891.html