当前位置:主页 > 医学论文 > 实验医学论文 >

UCPs在高原缺氧大鼠脑线粒体能量代谢中的作用

发布时间:2018-08-12 16:36
【摘要】: 线粒体氧化磷酸化是由呼吸链在将电子传递给氧的过程中将质子从内膜基质转到内膜外,形成跨膜质子电动势(△P),驱动ATP合成酶催化ADP和无机磷合成ATP。质子还可通过内膜上的另一质子通道——脱偶联蛋白(Uncoupling Proteins, UCPS)漏回到基质中,形成质子漏,降低△P,使氧化磷酸化脱偶联,减少ATP的生成,从而降低用氧效率,这部分氧耗为“无效氧耗”。高原缺氧时线粒体脱偶联增强,膜电位降低,能量生成减少,导致机体功能和代谢障碍。脱偶联蛋白4(Uncoupling Proteins 4,UCP4)和脱偶联蛋白5(Uncoupling Proteins 5,UCP5)是特异存在于哺乳动物脑组织中的UCPs家族成员,占脑中UCPs的84%以上。游离脂肪酸通过与UCPs分子构象中某些位点结合而促进棕色脂肪内UCP1,骨骼肌中UCP2和UCP3的活性,是潜在的UCP4、UCP5的激动剂。本实验通过棕榈酸脑组织块体外干预模型和棕榈酸游离脑线粒体干预模型,观察外源性游离脂肪酸对UCPs的活性和“含量”的影响及其在高原缺氧大鼠脑线粒体能量合成改变的作用,以探讨UCPs在缺氧大鼠脑线粒体能量生成和氧利用效率中的作用及调控机制。 方法 分别建立棕榈酸脑组织块体外干预模型和棕榈酸脑游离线粒体干预模型,在观察了棕榈酸对大鼠脑组织UCP4和UCP5 mRNA和蛋白表达的时效性影响以及对游离脑线粒体氧化磷酸化影响的时效性和量效性基础上,进一步探讨了棕榈酸对模拟高原缺氧大鼠脑UCPs表达、活性及其与线粒体呼吸氧耗和能量生成的关系。健康雄性SD大鼠暴露于模拟海拔5000米高原低压舱内,23h/d,分别连续缺氧3天(急性组)和30天(慢性组),同时设立对照组。心脏取血后,分别在平原和模拟高原低压舱断头处死,取大脑半球,分别切成1~2×2~3mm2的组织碎块和直接分离线粒体,分别以100μmol/L的棕榈酸进行脑组织块体外干预和游离脑线粒体体外干预,以Clark氧电极法测定线粒体氧化呼吸活性,TPMP+电极与Clark氧电极结合测质子漏,寡霉素抑制法测定F0F1-ATP酶活性,罗丹明123法测定线粒体膜电位,高压液相色谱法分析脑组织线粒体内腺苷酸含量,[3H]-GTP结合法测定脑组织UCPs的活性。RT-PCR和Westernblot分别测定脑组织干预后UCP4、UCP5 mRNA和蛋白表达。同时,以铜离子法测定缺氧大鼠血清、脑组织匀浆液和线粒体内游离脂肪酸含量。 结果 1.100μmol/L的棕榈酸大鼠脑组织块体外干预时间达30min时,UCP4和UCP5 mRNA表达达其峰值,而蛋白表达亦显著升高,线粒体氧化磷酸化呼吸效率显著降低。棕榈酸大鼠游离脑线粒体体外干预,当浓度在0.1 mmol/L内,时间在1min内时与线粒体氧化呼吸存在量效关系。 2.缺氧能增强大鼠脑组织UCPs活性,急性缺氧组Kd值降低41.24%,而Bmax值升高1.56倍。棕榈酸干预能进一步增加各组UCPs的活性,但使急性组增加幅度最低,Kd值仅下降13.96%,而Bmax则仅升高16.01%。 3.缺氧使大鼠血清、脑组织匀浆、线粒体内游离脂肪酸含量升高,以急性组升高最明显,分别达到51.36%, 243.35%和69.49%,慢性组较急性组有所下降,但仍高于对照组。相关性分析显示,大鼠血清、脑组织、线粒体游离脂肪酸含量与反映UCPs活性的Kd值呈线性负相关,与反映UCPs“含量”的Bmax呈线性正相关(脑组织游离脂肪酸含量与UCPs活性的相关系数最高)。 4.缺氧组脑线粒体ST3、RCR、OPR、P/O和MMP明显降低,ST4、质子漏则明显升高。棕榈酸可进一步增加各组呼吸氧耗和质子漏,降低MMP,其中对急性缺氧组的影响最小,ST3和ST4分别升高5.12%和38.69%,RCR、OPR和P/O分别升高24.64%、3.19%和3.96%,MMP仅降低6.91%。 5.缺氧组脑线粒体F0F1-ATP酶活性、ATP含量、ATP/ADP和ATP/总腺苷酸比值显著降低,以急性组降低最显著,分别降低43.32%、27.79%、16.39%和28.67%。棕榈酸可使急性组总腺苷酸池(ATP+ADP+AMP)、(ATP+ADP)池含量分别降低30.90%和49.29%以及各组ATP/ADP均升高,且急性组升高163.04%;同时各组ATP/总腺苷酸池比值均降低,对照组、急性组能荷均分别降低36.91%和13.64%。 6.缺氧组脑UCP4、UCP5mRNA和蛋白表达增高,其中急性组上调幅度最大,UCP4mRNA和蛋白表达分别为对照组的19.04倍和16.95倍,UCP5 mRNA以及蛋白则分别为对照组的2.17倍和4.71倍。棕榈酸体外干预进一步增强各组UCP4、UCP5mRNA和蛋白表达,但急性组升高幅度最小。 结论 1.棕榈酸可直接影响脑线粒体UCPs活性和UCP4和UCP5 mRNA和蛋白表达,增强质子漏和脱偶联呼吸,进而影响脑线粒体的氧化磷酸化功能,降低氧化磷酸化效率,且有时间和剂量依赖性。缺氧暴露在一定程度上可削弱棕榈酸促UCPs活性和含量的效能。 2.缺氧可增加脑线粒体UCPs活性,以及UCP4、UCP5 mRNA和蛋白表达,与缺氧时血及脑内游离脂肪酸代谢改变有关。缺氧时游离脂肪酸升高——UCPs活性增强——解耦联——ATP生成下降为缺氧时脑能量合成障碍的中心环节。 全文总结 模拟高原缺氧暴露可使大鼠血清、脑组织及线粒体内游离脂肪酸含量升高,脑线粒体UCPs活性和含量增加,脑UCP4、UCP5 mRNA和蛋白表达增强,质子漏增强,膜电位降低,从而使“无效氧耗”增加,氧化磷酸化效率降低,线粒体能量合成减少;棕榈酸则可进一步升高缺氧大鼠脑线粒体UCPs活性与含量,增强脑UCP4、UCP5 mRNA和蛋白表达,从而增加质子漏,降低膜电位,增强脱偶联,具有降低氧化磷酸化效率和能量生成效率的作用。棕榈酸的这些作用与缺氧暴露有关,缺氧暴露可弱化棕榈酸的作用。实验揭示了模拟高原缺氧时游离脂肪酸——UCPs表达、含量及活性——线粒体呼吸氧耗——ATP生成之间的相互关系,提示游离脂肪酸——UCPs相互作用是缺氧时组织能量代谢障碍的重要环节之一。
[Abstract]:Mitochondrial oxidative phosphorylation is the transfer of protons from the endometrial matrix to the outer membrane by the respiratory chain during electron transfer to oxygen, forming a transmembrane proton electromotive force (delta P), which drives ATP synthase to catalyze the synthesis of ATP from ADP and inorganic phosphorus. Back in the matrix, proton leaks are formed, Delta P is reduced, oxidative phosphorylation is decoupled, ATP is reduced, and oxygen use efficiency is reduced. This part of oxygen consumption is "ineffective oxygen consumption". UCP4 and UCP5 are members of the UCPs family specifically present in mammalian brain tissues, accounting for more than 84% of the UCPs in the brain. Free fatty acids promote the activity of UCP1 in brown fat, UCP2 and UCP3 in skeletal muscle by binding to certain sites in the conformation of UCPs. They are potential agonists of UCP4 and UCP5. In order to investigate the effect of exogenous free fatty acids on the activity and content of UCPs and the change of mitochondrial energy synthesis in the brain of hypoxic rats at high altitude, the in vitro intervention model of palmitic acid brain block and the model of palmitic acid free brain mitochondrial intervention were used to observe the effect of exogenous free fatty acids on the activity and content of UCPs. The role and regulation mechanism of efficiency.
Method
The in vitro intervention model of palmitic acid brain tissue block and the model of palmitic acid brain free mitochondria intervention were established. The effect of palmitic acid on the expression of UCP4 and UCP5 mRNA and protein in rat brain tissue and the effect of palmitic acid on the oxidative phosphorylation of free brain mitochondria were observed. Healthy male SD rats were exposed to simulated altitude hypobaric chamber at 5000 m for 23 h/d for 3 days (acute group) and 30 days (chronic group) respectively, and control group was set up. After blood collection, the rats were exposed to simulated altitude hypobaric chamber for 3 days (acute group) and 30 days (chronic group). Cerebral hemisphere was cut into 1-2 *2-3 mm2 tissue fragments and mitochondria were separated directly. Brain tissue fragments and free brain mitochondria were interfered with palmitic acid at 100 micromol/L in vitro. Mitochondrial oxidative respiratory activity was measured by Clark oxygen electrode, proton leakage was detected by TPMP + electrode and Clark oxygen electrode. The activity of F0F1-ATPase was measured by inhibiting factor assay, mitochondrial membrane potential by rhodamine 123, adenylate content in brain mitochondria by high performance liquid chromatography, and UCPs activity by combining [3H]-GTP. The expression of UCP4 and UCP5 mRNA and protein were measured by RT-PCR and Western blot respectively. The contents of free fatty acids in serum, brain homogenate and mitochondria were measured in rats.
Result
The expression of UCP4 and UCP5 mRNA reached its peak value, and the expression of UCP4 and UCP5 protein increased significantly, and the respiratory efficiency of mitochondria oxidative phosphorylation decreased significantly. The free cerebral mitochondria of palmitic acid Rats Intervened in vitro when the concentration of palmitic acid was within 0.1 mmol/L and the time was within 1 minute. There is a dose effect relationship.
2. Hypoxia could enhance the activity of UCPs in rat brain tissue. The Kd value decreased by 41.24% in acute hypoxia group, while the Bmax value increased by 1.56 times. Palmitic acid intervention could further increase the activity of UCPs in each group, but the increase was the lowest in acute group. The Kd value decreased only by 13.96%, while the Bmax value increased only by 16.01%.
3. Hypoxia increased the content of free fatty acids in serum, brain homogenate and mitochondria of rats, the highest in acute group was 51.36%, 243.35% and 69.49% respectively. The content of free fatty acids in serum, brain tissue and mitochondria of chronic group was lower than that of acute group, but still higher than that of control group. There was a linear negative correlation between D value and Bmax reflecting UCPs content (the highest correlation coefficient between free fatty acid content and UCPs activity in brain tissue).
4. Mitochondrial ST3, RCR, OPR, P/O and MMP decreased significantly in hypoxic group, while ST4 and proton leakage increased significantly. Palmitic acid could further increase respiratory oxygen consumption and proton leakage, and reduce MMP. Among them, ST3 and ST4 increased by 5.12% and 38.69%, RCR, OPR and P/O increased by 24.64%, 3.19% and 3.96% respectively, while MMP decreased by only 6.91%.
5. The activity of F0F1-ATPase, ATP content, ATP/ADP and ATP/total adenylate ratio in the hypoxic group were significantly decreased, with the most significant decrease in the acute group, 43.32%, 27.79%, 16.39% and 28.67% respectively. Palmitic acid could decrease the total adenylate pool (ATP+ADP+AMP), ATP+ADP pool (ATP+ADP) content by 30.90% and ATP/ADP ratio by 49.29% in the acute group. At the same time, ATP / total adenylate pool ratio of each group decreased, while energy charge of control group and acute group decreased by 36.91% and 13.64% respectively.
6. The expression of UCP4, UCP5 mRNA and protein in the brain of hypoxic group increased significantly. The expression of UCP4 mRNA and protein was 19.04 and 16.95 times higher in the acute group than in the control group. The expression of UCP5 mRNA and protein was 2.17 and 4.71 times higher in the hypoxic group than that in the control group. The minimum amplitude.
conclusion
1. Palmitic acid can directly affect the activity of UCPs and the expression of UCP4 and UCP5 mRNA and protein in brain mitochondria, enhance proton leakage and decoupling respiration, then affect the oxidative phosphorylation function of brain mitochondria, reduce the efficiency of oxidative phosphorylation, and it is time and dose dependent. Hypoxia exposure can weaken the activity and content of palmitic acid-induced UCPs to a certain extent. Efficiency.
2. Hypoxia can increase the activity of UCPs in brain mitochondria, and the expression of UCP4, UCP5 mRNA and protein, which is related to the changes of free fatty acid metabolism in blood and brain during hypoxia.
A summary of the full text
Simulated high altitude hypoxia exposure can increase the free fatty acid content in serum, brain tissue and mitochondria, increase the activity and content of UCPs in brain mitochondria, increase the expression of UCP4 and UCP5 mRNA and protein, increase the proton leakage and decrease the membrane potential, so that the "ineffective oxygen consumption" increases, the oxidative phosphorylation efficiency decreases, and mitochondrial energy synthesis decreases. Palmitic acid can further increase the activity and content of UCPs in the brain mitochondria of hypoxic rats, enhance the expression of UCP4, UCP5 mRNA and protein, thereby increasing proton leakage, reducing membrane potential, enhancing decoupling, and reducing the efficiency of oxidative phosphorylation and energy production. The experiment reveals the relationship between the expression, content and activity of free fatty acid-UCPs, oxygen consumption of mitochondria and ATP production during simulated altitude hypoxia, suggesting that the interaction of free fatty acid-UCPs is one of the important links of energy metabolism disorder during hypoxia.
【学位授予单位】:第三军医大学
【学位级别】:硕士
【学位授予年份】:2008
【分类号】:R363

【相似文献】

相关期刊论文 前10条

1 王亚利!261031山东,张式暖!261031山东,姜萍!261031山东,刘景邦!261031山东,吕爱敏!261031山东;复方丹参注射液对小鼠心肌保护作用的研究[J];中国当代儿科杂志;1999年04期

2 王关嵩,钱桂生,关崧,陈维中;肺微血管内皮细胞的培养液对血管平滑肌细胞的效应[J];第三军医大学学报;2000年09期

3 徐剑文,王玮,康仲涵,张更;缺氧对血脑屏障细胞分泌组织型纤溶酶原激活物的影响[J];解剖学杂志;2000年06期

4 陈晓红,边连防,伍爱民,王竹立,陶亮,胡学强;高糖对缺氧神经元的影响及钙相关机制研究[J];中国神经科学杂志;2000年04期

5 甄国华,张珍祥,徐永健;血晶素促进缺氧大鼠肺组织诱导型血红素氧合酶基因的表达[J];中国药理学通报;2001年03期

6 吴明赴!225001,符明凤!225001,杨勇!225001,陆奎英!225001,钱厚明!225001,祝宝华!225001;血清肌钙蛋白Ⅰ测定对新生儿缺氧心肌损伤的诊断价值[J];江苏医药;2001年08期

7 李贤峰,郑红,杨晔,姜志胜;急重期慢性肺心病患者血浆肾上腺髓质素浓度测定及基础研究[J];中国急救医学;2001年10期

8 董红霞,倪敏霞,蔡笑鸿;新生儿缺氧与心、肝、肾功能变化对比观察[J];中国基层医药;2002年09期

9 唐光波,唐晓燕;头孢曲松致过敏性休克并失语1例[J];实用儿科临床杂志;2003年05期

10 郭方明,宋秀媛,姜波,刘同美,高尔,丁怡,邓敏;缺氧对兔胸主动脉平滑肌细胞增殖的影响[J];中国病理生理杂志;2003年07期

相关会议论文 前10条

1 赵永忠;王波;王天才;;血管内皮生长因子在实验性胆汁性肝硬化形成过程中的作用[A];第二届全国人工肝及血液净化学术年会论文集[C];2005年

2 李静;陈平圣;;缺氧肝细胞影响肝星状细胞MMP-2表达及其活性水平[A];中华医学会病理学分会2009年学术年会论文汇编[C];2009年

3 江伟健;石磊;黄海;赵树进;;高原环境对药物代谢作用的影响[A];2010年广东省药师周大会论文集[C];2011年

4 罗光恒;;CTGF siRNA抑制缺氧导致的肾小管上皮-间质转化的实验研究[A];2010年贵州省泌尿外科学术会议论文集[C];2010年

5 董世山;利凯;王迎春;欧德渊;张建军;杨玉成;赵立红;乔健;;缺氧对肉鸡心肌细胞内游离Ca~(2+)浓度的影响[A];中国畜牧兽医学会兽医病理学分会第十四次学术研讨会、中国病理生理学会动物病理生理专业委员会第十三次学术研讨会论文集[C];2006年

6 周帅;孙晓川;;载脂蛋白E基因多态性与星形胶质细胞细胞水肿的相关性研究[A];第二届西部神经外科学术会议论文集[C];2010年

7 石莹;朱依纯;;缺氧诱导血管新生机制的研究新进展[A];中国生理学会论文汇编2004年第二期[C];2004年

8 赵延东;阮怀珍;;缺氧对海马CA1区神经元P2X受体功能及表达的影响[A];中国神经科学学会第六届学术会议暨学会成立十周年庆祝大会论文摘要汇编[C];2005年

9 高红;王立萍;祁钊;周晶萍;任卫全;;人血清肌钙蛋白Ⅰ在不同地理位置的临床表现[A];第五次全国中青年检验医学学术会议论文汇编[C];2006年

10 邹良玉;褚晓凡;;褪黑素通过抑制线粒体通透性转换孔开放保护缺氧缺糖SHSY5Y细胞[A];第九次全国神经病学学术大会论文汇编[C];2006年

相关博士学位论文 前10条

1 李志华;早产儿MLS脑干听觉诱发电位的特点及缺氧对诱发电位的影响[D];复旦大学;2005年

2 孟繁平;Raf-1在胃癌及其血管生成中的作用及分子机制研究[D];第四军医大学;2005年

3 付雪梅;AQP4在星形胶质细胞缺氧复氧损伤模型中的表达变化及调控机制[D];四川大学;2004年

4 张磊;长江口、东海的镭同位素及其在水团混合分析中的应用[D];华东师范大学;2007年

5 来滨;神经元线粒体电子传递链复合体抑制对持续和瞬态钠电流的影响及其机制[D];复旦大学;2005年

6 孙东;马兜铃酸致大鼠肾脏和骨髓微血管损伤的研究[D];中国医科大学;2006年

7 王应利;视网膜周细胞对微血管内皮细胞生长和紧密连接形成影响的研究[D];第四军医大学;2006年

8 刘英;缺氧缺血性脑损伤新生大鼠心肌细胞凋亡、影响因素及1,6-二磷酸果糖保护作用的研究[D];吉林大学;2007年

9 梁光萍;人脐静脉内皮细胞缺氧早期基因表达谱研究[D];第三军医大学;2007年

10 李忆东;非基因毒应激对小G蛋白RhoB表达的诱导作用、机制及生物学意义[D];第二军医大学;2008年

相关硕士学位论文 前10条

1 夏琛;嘌呤核苷酸对模拟高原缺氧大鼠脑线粒体UCPs活性和表达的影响及其在呼吸氧耗与能量合成中的作用[D];第三军医大学;2007年

2 徐瑜;UCPs在高原缺氧大鼠脑线粒体能量代谢中的作用[D];第三军医大学;2008年

3 鄢卫华;OMT对模拟高原缺氧大鼠脑线粒体呼吸氧耗与能量生成的影响及抗缺氧效应研究[D];第三军医大学;2012年

4 黄亮;瘦素在妊娠高血压综合征发病机制中作用的实验研究[D];第四军医大学;2005年

5 王双燕;人参皂苷Rg_2对体外培养的大鼠海马缺氧神经元的预防保护作用[D];青岛大学;2005年

6 毕玫荣;缺氧对低出生体重儿凝血功能的影响[D];山东大学;2005年

7 颜晓慧;缺氧对大鼠星形胶质细胞AQP4表达的影响[D];第一军医大学;2005年

8 张明军;急性超容血液稀释对机体安全缺氧时限影响的探讨[D];新疆医科大学;2005年

9 李黎;力竭性运动后鲇鱼幼鱼生理生化指标的变动[D];重庆师范大学;2006年

10 王萍;脑红蛋白基因在缺氧缺血性脑损伤多脏器中的表达及其机制的探讨[D];中国人民解放军军医进修学院;2005年



本文编号:2179638

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/shiyanyixue/2179638.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户fed02***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com