UCPs在高原缺氧大鼠脑线粒体能量代谢中的作用
[Abstract]:Mitochondrial oxidative phosphorylation is the transfer of protons from the endometrial matrix to the outer membrane by the respiratory chain during electron transfer to oxygen, forming a transmembrane proton electromotive force (delta P), which drives ATP synthase to catalyze the synthesis of ATP from ADP and inorganic phosphorus. Back in the matrix, proton leaks are formed, Delta P is reduced, oxidative phosphorylation is decoupled, ATP is reduced, and oxygen use efficiency is reduced. This part of oxygen consumption is "ineffective oxygen consumption". UCP4 and UCP5 are members of the UCPs family specifically present in mammalian brain tissues, accounting for more than 84% of the UCPs in the brain. Free fatty acids promote the activity of UCP1 in brown fat, UCP2 and UCP3 in skeletal muscle by binding to certain sites in the conformation of UCPs. They are potential agonists of UCP4 and UCP5. In order to investigate the effect of exogenous free fatty acids on the activity and content of UCPs and the change of mitochondrial energy synthesis in the brain of hypoxic rats at high altitude, the in vitro intervention model of palmitic acid brain block and the model of palmitic acid free brain mitochondrial intervention were used to observe the effect of exogenous free fatty acids on the activity and content of UCPs. The role and regulation mechanism of efficiency.
Method
The in vitro intervention model of palmitic acid brain tissue block and the model of palmitic acid brain free mitochondria intervention were established. The effect of palmitic acid on the expression of UCP4 and UCP5 mRNA and protein in rat brain tissue and the effect of palmitic acid on the oxidative phosphorylation of free brain mitochondria were observed. Healthy male SD rats were exposed to simulated altitude hypobaric chamber at 5000 m for 23 h/d for 3 days (acute group) and 30 days (chronic group) respectively, and control group was set up. After blood collection, the rats were exposed to simulated altitude hypobaric chamber for 3 days (acute group) and 30 days (chronic group). Cerebral hemisphere was cut into 1-2 *2-3 mm2 tissue fragments and mitochondria were separated directly. Brain tissue fragments and free brain mitochondria were interfered with palmitic acid at 100 micromol/L in vitro. Mitochondrial oxidative respiratory activity was measured by Clark oxygen electrode, proton leakage was detected by TPMP + electrode and Clark oxygen electrode. The activity of F0F1-ATPase was measured by inhibiting factor assay, mitochondrial membrane potential by rhodamine 123, adenylate content in brain mitochondria by high performance liquid chromatography, and UCPs activity by combining [3H]-GTP. The expression of UCP4 and UCP5 mRNA and protein were measured by RT-PCR and Western blot respectively. The contents of free fatty acids in serum, brain homogenate and mitochondria were measured in rats.
Result
The expression of UCP4 and UCP5 mRNA reached its peak value, and the expression of UCP4 and UCP5 protein increased significantly, and the respiratory efficiency of mitochondria oxidative phosphorylation decreased significantly. The free cerebral mitochondria of palmitic acid Rats Intervened in vitro when the concentration of palmitic acid was within 0.1 mmol/L and the time was within 1 minute. There is a dose effect relationship.
2. Hypoxia could enhance the activity of UCPs in rat brain tissue. The Kd value decreased by 41.24% in acute hypoxia group, while the Bmax value increased by 1.56 times. Palmitic acid intervention could further increase the activity of UCPs in each group, but the increase was the lowest in acute group. The Kd value decreased only by 13.96%, while the Bmax value increased only by 16.01%.
3. Hypoxia increased the content of free fatty acids in serum, brain homogenate and mitochondria of rats, the highest in acute group was 51.36%, 243.35% and 69.49% respectively. The content of free fatty acids in serum, brain tissue and mitochondria of chronic group was lower than that of acute group, but still higher than that of control group. There was a linear negative correlation between D value and Bmax reflecting UCPs content (the highest correlation coefficient between free fatty acid content and UCPs activity in brain tissue).
4. Mitochondrial ST3, RCR, OPR, P/O and MMP decreased significantly in hypoxic group, while ST4 and proton leakage increased significantly. Palmitic acid could further increase respiratory oxygen consumption and proton leakage, and reduce MMP. Among them, ST3 and ST4 increased by 5.12% and 38.69%, RCR, OPR and P/O increased by 24.64%, 3.19% and 3.96% respectively, while MMP decreased by only 6.91%.
5. The activity of F0F1-ATPase, ATP content, ATP/ADP and ATP/total adenylate ratio in the hypoxic group were significantly decreased, with the most significant decrease in the acute group, 43.32%, 27.79%, 16.39% and 28.67% respectively. Palmitic acid could decrease the total adenylate pool (ATP+ADP+AMP), ATP+ADP pool (ATP+ADP) content by 30.90% and ATP/ADP ratio by 49.29% in the acute group. At the same time, ATP / total adenylate pool ratio of each group decreased, while energy charge of control group and acute group decreased by 36.91% and 13.64% respectively.
6. The expression of UCP4, UCP5 mRNA and protein in the brain of hypoxic group increased significantly. The expression of UCP4 mRNA and protein was 19.04 and 16.95 times higher in the acute group than in the control group. The expression of UCP5 mRNA and protein was 2.17 and 4.71 times higher in the hypoxic group than that in the control group. The minimum amplitude.
conclusion
1. Palmitic acid can directly affect the activity of UCPs and the expression of UCP4 and UCP5 mRNA and protein in brain mitochondria, enhance proton leakage and decoupling respiration, then affect the oxidative phosphorylation function of brain mitochondria, reduce the efficiency of oxidative phosphorylation, and it is time and dose dependent. Hypoxia exposure can weaken the activity and content of palmitic acid-induced UCPs to a certain extent. Efficiency.
2. Hypoxia can increase the activity of UCPs in brain mitochondria, and the expression of UCP4, UCP5 mRNA and protein, which is related to the changes of free fatty acid metabolism in blood and brain during hypoxia.
A summary of the full text
Simulated high altitude hypoxia exposure can increase the free fatty acid content in serum, brain tissue and mitochondria, increase the activity and content of UCPs in brain mitochondria, increase the expression of UCP4 and UCP5 mRNA and protein, increase the proton leakage and decrease the membrane potential, so that the "ineffective oxygen consumption" increases, the oxidative phosphorylation efficiency decreases, and mitochondrial energy synthesis decreases. Palmitic acid can further increase the activity and content of UCPs in the brain mitochondria of hypoxic rats, enhance the expression of UCP4, UCP5 mRNA and protein, thereby increasing proton leakage, reducing membrane potential, enhancing decoupling, and reducing the efficiency of oxidative phosphorylation and energy production. The experiment reveals the relationship between the expression, content and activity of free fatty acid-UCPs, oxygen consumption of mitochondria and ATP production during simulated altitude hypoxia, suggesting that the interaction of free fatty acid-UCPs is one of the important links of energy metabolism disorder during hypoxia.
【学位授予单位】:第三军医大学
【学位级别】:硕士
【学位授予年份】:2008
【分类号】:R363
【相似文献】
相关期刊论文 前10条
1 王亚利!261031山东,张式暖!261031山东,姜萍!261031山东,刘景邦!261031山东,吕爱敏!261031山东;复方丹参注射液对小鼠心肌保护作用的研究[J];中国当代儿科杂志;1999年04期
2 王关嵩,钱桂生,关崧,陈维中;肺微血管内皮细胞的培养液对血管平滑肌细胞的效应[J];第三军医大学学报;2000年09期
3 徐剑文,王玮,康仲涵,张更;缺氧对血脑屏障细胞分泌组织型纤溶酶原激活物的影响[J];解剖学杂志;2000年06期
4 陈晓红,边连防,伍爱民,王竹立,陶亮,胡学强;高糖对缺氧神经元的影响及钙相关机制研究[J];中国神经科学杂志;2000年04期
5 甄国华,张珍祥,徐永健;血晶素促进缺氧大鼠肺组织诱导型血红素氧合酶基因的表达[J];中国药理学通报;2001年03期
6 吴明赴!225001,符明凤!225001,杨勇!225001,陆奎英!225001,钱厚明!225001,祝宝华!225001;血清肌钙蛋白Ⅰ测定对新生儿缺氧心肌损伤的诊断价值[J];江苏医药;2001年08期
7 李贤峰,郑红,杨晔,姜志胜;急重期慢性肺心病患者血浆肾上腺髓质素浓度测定及基础研究[J];中国急救医学;2001年10期
8 董红霞,倪敏霞,蔡笑鸿;新生儿缺氧与心、肝、肾功能变化对比观察[J];中国基层医药;2002年09期
9 唐光波,唐晓燕;头孢曲松致过敏性休克并失语1例[J];实用儿科临床杂志;2003年05期
10 郭方明,宋秀媛,姜波,刘同美,高尔,丁怡,邓敏;缺氧对兔胸主动脉平滑肌细胞增殖的影响[J];中国病理生理杂志;2003年07期
相关会议论文 前10条
1 赵永忠;王波;王天才;;血管内皮生长因子在实验性胆汁性肝硬化形成过程中的作用[A];第二届全国人工肝及血液净化学术年会论文集[C];2005年
2 李静;陈平圣;;缺氧肝细胞影响肝星状细胞MMP-2表达及其活性水平[A];中华医学会病理学分会2009年学术年会论文汇编[C];2009年
3 江伟健;石磊;黄海;赵树进;;高原环境对药物代谢作用的影响[A];2010年广东省药师周大会论文集[C];2011年
4 罗光恒;;CTGF siRNA抑制缺氧导致的肾小管上皮-间质转化的实验研究[A];2010年贵州省泌尿外科学术会议论文集[C];2010年
5 董世山;利凯;王迎春;欧德渊;张建军;杨玉成;赵立红;乔健;;缺氧对肉鸡心肌细胞内游离Ca~(2+)浓度的影响[A];中国畜牧兽医学会兽医病理学分会第十四次学术研讨会、中国病理生理学会动物病理生理专业委员会第十三次学术研讨会论文集[C];2006年
6 周帅;孙晓川;;载脂蛋白E基因多态性与星形胶质细胞细胞水肿的相关性研究[A];第二届西部神经外科学术会议论文集[C];2010年
7 石莹;朱依纯;;缺氧诱导血管新生机制的研究新进展[A];中国生理学会论文汇编2004年第二期[C];2004年
8 赵延东;阮怀珍;;缺氧对海马CA1区神经元P2X受体功能及表达的影响[A];中国神经科学学会第六届学术会议暨学会成立十周年庆祝大会论文摘要汇编[C];2005年
9 高红;王立萍;祁钊;周晶萍;任卫全;;人血清肌钙蛋白Ⅰ在不同地理位置的临床表现[A];第五次全国中青年检验医学学术会议论文汇编[C];2006年
10 邹良玉;褚晓凡;;褪黑素通过抑制线粒体通透性转换孔开放保护缺氧缺糖SHSY5Y细胞[A];第九次全国神经病学学术大会论文汇编[C];2006年
相关博士学位论文 前10条
1 李志华;早产儿MLS脑干听觉诱发电位的特点及缺氧对诱发电位的影响[D];复旦大学;2005年
2 孟繁平;Raf-1在胃癌及其血管生成中的作用及分子机制研究[D];第四军医大学;2005年
3 付雪梅;AQP4在星形胶质细胞缺氧复氧损伤模型中的表达变化及调控机制[D];四川大学;2004年
4 张磊;长江口、东海的镭同位素及其在水团混合分析中的应用[D];华东师范大学;2007年
5 来滨;神经元线粒体电子传递链复合体抑制对持续和瞬态钠电流的影响及其机制[D];复旦大学;2005年
6 孙东;马兜铃酸致大鼠肾脏和骨髓微血管损伤的研究[D];中国医科大学;2006年
7 王应利;视网膜周细胞对微血管内皮细胞生长和紧密连接形成影响的研究[D];第四军医大学;2006年
8 刘英;缺氧缺血性脑损伤新生大鼠心肌细胞凋亡、影响因素及1,6-二磷酸果糖保护作用的研究[D];吉林大学;2007年
9 梁光萍;人脐静脉内皮细胞缺氧早期基因表达谱研究[D];第三军医大学;2007年
10 李忆东;非基因毒应激对小G蛋白RhoB表达的诱导作用、机制及生物学意义[D];第二军医大学;2008年
相关硕士学位论文 前10条
1 夏琛;嘌呤核苷酸对模拟高原缺氧大鼠脑线粒体UCPs活性和表达的影响及其在呼吸氧耗与能量合成中的作用[D];第三军医大学;2007年
2 徐瑜;UCPs在高原缺氧大鼠脑线粒体能量代谢中的作用[D];第三军医大学;2008年
3 鄢卫华;OMT对模拟高原缺氧大鼠脑线粒体呼吸氧耗与能量生成的影响及抗缺氧效应研究[D];第三军医大学;2012年
4 黄亮;瘦素在妊娠高血压综合征发病机制中作用的实验研究[D];第四军医大学;2005年
5 王双燕;人参皂苷Rg_2对体外培养的大鼠海马缺氧神经元的预防保护作用[D];青岛大学;2005年
6 毕玫荣;缺氧对低出生体重儿凝血功能的影响[D];山东大学;2005年
7 颜晓慧;缺氧对大鼠星形胶质细胞AQP4表达的影响[D];第一军医大学;2005年
8 张明军;急性超容血液稀释对机体安全缺氧时限影响的探讨[D];新疆医科大学;2005年
9 李黎;力竭性运动后鲇鱼幼鱼生理生化指标的变动[D];重庆师范大学;2006年
10 王萍;脑红蛋白基因在缺氧缺血性脑损伤多脏器中的表达及其机制的探讨[D];中国人民解放军军医进修学院;2005年
,本文编号:2179638
本文链接:https://www.wllwen.com/yixuelunwen/shiyanyixue/2179638.html