当前位置:主页 > 教育论文 > 高中教育论文 >

高二学生解析几何学习障碍及对策研究

发布时间:2018-10-17 13:38
【摘要】:解析几何是高中数学课程的重难点所在,高中生在解析几何课程的学习中存在诸多障碍。笔者采用调查问卷结合访谈的形式对某高级中学高二学生进行了调研,内容包括:学生学习解析几何课程的习惯、态度和心理状况;学生的计算能力;学生对解析几何课程中概念、公式及定理的掌握情况;对所包含的数学思想方法的运用情况。本文对某中学320名高二学生进行问卷和测试卷调查。问卷的统计数据显示有76.2%的学生表示对解析几何不感兴趣,有23%的学生认为解析几何的最大障碍是计算过程复杂繁琐,15%的学生认为公式太多记不住,14%的学生不会运用思想方法,测试卷中两个解析几何题的答题正确率分别为32%和8%。笔者仔细分析调查结果,查阅大量资料,认为学生在解析几何学习中存在以下几个问题:(1)学习目标不明确,对解析几何的学习情感淡漠;(2)学习功利化,看重分数,对解析几何的学习过分焦虑;(3)解析几何课程中融合了函数、向量、三角等知识,但学生对这些已学过的基础知识掌握较差,在知识迁移上存在障碍;(4)解析几何课程概念定义多且易混淆,学生对概念的学习停留在机械识记上,没有理解,导致在概念定义运用上存在障碍;(5)解析几何问题计算量大且涉及字母运算和算法技巧,但学生基本运算方法不熟练,运算能力偏弱,在运算操作上存在障碍;(6)学生对解析几何中涉及的思想方法理解不深刻,不全面,忽视使用的条件,按模式套路解题,在思想方法运用上存在障碍。针对以上障碍的表现,笔者从解析几何课程、学生和教师三方面分析了障碍产生的原因,结合调查和实践,提供了以下一些克服障碍的教育教学对策:(1)加强师生之间的沟通,克服情绪障碍;(2)注重知识之间的联系,克服迁移障碍;(3)重视知识生成的教学,克服理解障碍;(4)注重运算能力的培养,克服运算障碍;(5)加强思想方法的渗透,克服应用障碍。
[Abstract]:Analytic geometry is the most important and difficult part of mathematics course in senior high school, and there are many obstacles in the course of senior high school students. In the form of questionnaire and interview, the author investigated the students in a senior middle school, including the habit, attitude and psychology of studying analytic geometry course, the students' computing ability, and the students' ability to calculate. Students' mastery of concepts, formulas and theorems in analytical geometry courses, and the application of mathematical ideas and methods contained therein. In this paper, 320 senior two students in a middle school were investigated with questionnaires and test papers. Statistics from the questionnaire show that 76.2% of the students are not interested in analytic geometry, 23% think that the biggest obstacle to analytic geometry is the complexity of the calculation process, 15% think that the formula is too much to remember, and 14% do not use the method of thinking. The accuracy rates of the two analytic geometry questions in the test paper were 32% and 8%, respectively. The author carefully analyzed the results of the investigation and consulted a large number of data, and concluded that the following problems existed in the study of analytic geometry: (1) the learning goal was unclear, and the learning emotion of analytic geometry was indifferent; (2) the study was utilitarian, and scores were valued. (3) the course of Analytical Geometry integrates functions, vectors, triangles and so on, but students have a poor grasp of the basic knowledge they have learned. There are obstacles in knowledge transfer. (4) Analytical Geometry course has many definitions and is easy to be confused. As a result, there are obstacles in the application of the concept definition. (5) Analytical geometry problems involve a large amount of computation and involve alphabetical operations and algorithmic skills, but the students are not proficient in the basic operation methods and are weak in computing ability. There are obstacles in the operation of operation; (6) students do not have a profound understanding of the thinking methods involved in analytic geometry and ignore the conditions of using them. They solve problems according to the pattern routine and have obstacles in the application of thought methods. In view of the performance of the above obstacles, the author analyzes the causes of the obstacles from three aspects of Analytical Geometry course, students and teachers, and provides the following educational and teaching countermeasures to overcome the obstacles: (1) strengthening the communication between teachers and students; To overcome emotional obstacles; (2) to pay attention to the relationship between knowledge, overcome the obstacles of transfer; (3) to pay attention to the teaching of knowledge generation, to overcome the obstacles of understanding; (4) to pay attention to the training of operational ability, to overcome operational obstacles; (5) to strengthen the penetration of thought and methods and to overcome the obstacles of application.
【学位授予单位】:南京师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:G633.6

【参考文献】

相关期刊论文 前10条

1 周晓雯;李欢;;数学学习障碍研究述评[J];绥化学院学报;2016年07期

2 张文海;;“直线的斜率”课堂教学实录及反思[J];教育科学论坛;2015年03期

3 唐舜生;;注重培养转化意识 提高解几解题能力[J];数学通报;2014年05期

4 梁威;;国内外学习障碍研究的探索[J];教育理论与实践;2007年21期

5 章建跃;;我国中学数学解析几何教材的沿革——“中学数学中的解析几何”之二[J];中学数学教学参考;2007年15期

6 章建跃;;解析几何的思想、内容和意义——“中学数学中的解析几何”之一[J];中学数学教学参考;2007年13期

7 涂荣豹;;数学学习与数学迁移[J];数学教育学报;2006年04期

8 王志海;;简化解析几何运算的若干方法和技术[J];数学教学通讯;2006年05期

9 蔡永红;;SOLO分类理论及其在教学中的应用[J];教师教育研究;2006年01期

10 黄燕玲,喻平;对数学理解的再认识[J];数学教育学报;2002年03期

相关硕士学位论文 前10条

1 马宁;数学思想对高中解析几何学习影响的研究[D];河北师范大学;2014年

2 陈赛;高中生“排列组合”学习障碍及对策研究[D];山东师范大学;2013年

3 吴晓波;高中生“导数及其应用”学习障碍的探究[D];山东师范大学;2013年

4 兰学波;高中平面解析几何有效教学研究[D];内蒙古师范大学;2012年

5 李丛;高一学生三角函数认知障碍及对策研究[D];山东师范大学;2012年

6 周艳霞;高中文科倾向生解析几何学习策略调查研究[D];山东师范大学;2011年

7 严云;高中生数学学习心理障碍探究[D];苏州大学;2010年

8 徐燕;高中生对圆锥曲线的理解[D];华东师范大学;2009年

9 杨永良;高中生圆锥曲线认知水平发展研究[D];首都师范大学;2008年

10 赵红;高中解析几何“双基”教学的教学策略研究[D];天津师范大学;2006年



本文编号:2276831

资料下载
论文发表

本文链接:https://www.wllwen.com/zhongdengjiaoyulunwen/2276831.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e88e3***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com