当前位置:主页 > 管理论文 > 人力资源论文 >

下肢外骨骼的动力学分析与运动规划

发布时间:2018-04-16 22:01

  本文选题:下肢外骨骼 + 机构设计 ; 参考:《东南大学》2016年博士论文


【摘要】:外骨骼是一种能够增强人体力量与耐力的机械装置,并联穿戴于人体外侧,通过陀螺仪、关节电位器或编码器、人机交互力及足底力传感系统等实时检测外骨骼本身的位姿与人体的运动意图,通过电机、液压等方式驱动各关节,实现与人体的协调运动,并在这个过程对人体的运动进行助力,达成增强人体力量或辅助人体运动的目标。人体负责发出运动意图并保持运动稳定,外骨骼则根据人体的运动意图做出与人体协调的动作并承担负载,通过这种方式将人体的“智力”与外骨骼的“体力”结合到一起。目前,外骨骼具有诸多的应用方向,例如:在助老助残领域,可以帮助老年人或残疾人完成行走、上/下楼梯等日常行动,提高他们的生活质量;在医疗领域,可以辅助医护人员对脑卒中或者肢体伤病患者进行更高精度、更高可重复性的康复训练,一方面可以极大减轻医护人员的工作强度,另一方面可以根据患者的恢复情况及时调整外骨骼的控制策略以适应不同的训练模式;在负重搬运与单兵系统领域,可以帮助工作人员或者士兵背负或携带更多的通信设备、施工器材或者武器弹药等进行快速的行进,同时降低因为巨大的体能消耗造成的人员受伤或者非战斗减员等人力资源损失。本文的研究目标即为士兵或救援人员等负重作业者设计一种能够配合使用者完成行走、蹲下/站起、上/下楼梯等常见运动的下肢外骨骼系统。要求方便穿卸,尽量减少传感器的数量以降低系统复杂性,不得在人体上布置或粘贴传感器,对使用者的体型不敏感。为实现该目标,本文在如下5个方面进行了研究:1.进行了基于人体测量学的人体下肢运动学特性的研究。在课题组自行搭建的基于标记点空间位置捕捉与三维坐标重建的图像采集测量系统上进行了不同步速、不同负重的行走;上楼梯;蹲下、站起等步态测量实验,通过实验数据总结了人体下肢各关节在上述各步态下的运动学特性。2.在人体下肢运动学分析的基础上,对满足各常见运动要求的下肢外骨骼各关节所具有的自由度进行了分析,并进行了下肢外骨骼的本体机构(不含驱动系统)设计。建立了所设计的下肢外骨骼本体机构的D-H运动学模型,通过运动学分析确定了外骨骼与人体的连接方式。3.通过对比典型外骨骼动力学建模方法,提出了下肢外骨骼“二状态”动力学模型,即将下肢外骨骼的动力学状态分为“无摆动腿”与“有摆动腿”两种,采用达朗伯-拉格朗日方程对这两种状态分别进行建模。通过该模型,控制系统仅需检测外骨骼各关节角度信号即可求得各部分的惯性力、系统的足底力以及ZMP等信息,有效地减少了所需的传感器数量。此外,模型中消除了本不存在的支撑足足尖主动驱动自由度的影响,并通过MATLAB与Adams对比验证了模型正确性。利用该模型完成了不同负重、不同步速;上楼梯;蹲下、站起等常见运动的下肢外骨骼动力学分析。4.根据下肢外骨骼动力学计算结果,对满足常见运动要求的下肢外骨骼各关节的驱动特性进行了分析,在此基础上,模仿人体下肢肌肉骨骼系统为下肢外骨骼各关节的各主动驱动自由度配置了集成液压-套索驱动系统,并进行了优化计算。为各关节的非主动驱动自由度配置了弹簧被动驱动系统,并进行了详细的设计计算。最后,对装配了驱动系统的下肢外骨骼机构进行了关键部位的ANSYS受力校核,以保证结构安全性。5.在对国内外典型外骨骼控制方法的分析基础上,针对摆动腿提出了基于踝关节处人机位姿误差的逆运动学运动规划与基于动力学模型的PD控制策略,针对支撑腿提出了基于穿戴者足底力CoP与外骨骼ZMP之间误差的模糊运动规划策略。控制系统通过足底力信号采用模糊算法识别每条腿的运动状态,并采用相应的控制方法。对下肢外骨骼的传感器系统进行了设计与标定,包括躯干姿态传感器、关节电位器、踝关节处人机交互传感器、鞋垫式足底力传感器。最后,分别进行了摆动腿运动控制实验与支撑腿运动规划实验。
[Abstract]:The exoskeleton is a kind of mechanical device can enhance the body strength and endurance, worn on the human body through the parallel lateral, gyroscope, joint potentiometer or encoder, motion pose and real-time detection of human interaction force and plantar pressure sensing system etc. the skeleton itself intention, through the motor, drive the hydraulic joint way of realization with the coordinated movement of the human body, and in the process of human motion to help enhance the body strength, reach or auxiliary human motion target. The human body is responsible for the issue of exercise intention and maintain stable movement, the exoskeleton is according to the movement of the human body and human intentions to make coordinated movements and bear the load, by this way the human "intelligence" exoskeleton "physical" together. At present, the exoskeleton has many applications, for example: in the elderly and the disabled, can help the elderly or disabled People walk up / down stairs, daily operations, improve their quality of life; in the medical field, can help the medical staff of higher accuracy for stroke or limb injury patients, higher repeatability of rehabilitation training, one can greatly reduce the work intensity of the medical staff, on the other hand can timely control strategy adjust the exoskeleton according to the recovery of patients to adapt to different training mode; in handling and loading of soldier system, can help the staff or soldiers carry or carry more communication equipment, construction equipment or weapons and ammunition were to move quickly and reduce because of the huge energy consumption caused by injuries or non combat attrition and human resources loss. The goal of this paper is the soldiers and rescue workers and other workers to design a load with the end user in Go down / up, the lower extremity exoskeleton system on / off the stairs of common sports. Try to reduce the requirements of convenient wear unloading, the number of sensors in order to reduce the complexity of the system, shall be installed in the body or paste sensor is not sensitive to the user's body. To achieve this goal, this paper in 5 aspects as follows study: 1. of the kinematic characteristics of human lower extremity anthropometry. Based on our research group based on the image acquisition and measurement system marking position capture and 3D reconstruction of the different speed, different weight-bearing walking up the stairs;; squat, stand up and gait measurement experiment, through the experimental data summary the basic characteristics of human.2. kinematics of lower limb joints in the gait analysis in lower limb kinematics on each joint to meet the requirements of the common motion of lower extremity exoskeleton The degrees of freedom are analyzed, and the body of the lower extremity exoskeleton (excluding drive system) design. Established D-H kinematics model of lower extremity exoskeleton body design, through the kinematics analysis to determine the exoskeleton body and the connection mode of.3. through the dynamic modeling method of comparison of typical exoskeleton, the lower extremity exoskeleton "two state" dynamic model, dynamic state is lower extremity exoskeleton is divided into "free swinging leg" and "swing leg" in two, using d'Alembert - Lagrange equation are carried out on the two kinds of modeling. Through this model, the control system only needs to detect the angle of each joint exoskeleton the signal can obtain the inertia force of each part of the system of plantar pressure and ZMP information, effectively reduce the number of sensors required. In addition, the model eliminates the absence of support for the tip The driving effect of degree of freedom, and the model is validated by comparison between MATLAB and Adams. By utilizing this model. The different load, different pace; stairs; squat,.4. analysis according to the results of the lower extremity exoskeleton dynamics of lower extremity exoskeleton up common motion dynamics, driving characteristics of each joint to meet the common requirements the lower extremity exoskeleton is analyzed, on this basis, imitate the human lower extremity musculoskeletal system for lower extremity exoskeleton joint drive each DOF configuration integrated hydraulic drive system and the lasso, the optimization calculation for each joint non active degrees of freedom configuration of the spring driven passive driving system, and the detailed design and calculation. Finally, the assembly of the lower extremity exoskeleton mechanism driving system are the key parts of the ANSYS force check, in order to ensure the structure safety in.5. Based on the analysis of foreign and domestic typical exoskeleton control method, the swing leg is proposed based on the inverse kinematics of the ankle joint motion planning human pose error and dynamic model of PD control strategy based on the supporting leg put forward fuzzy motion planning strategy error between the wearer and the exoskeleton foot force of CoP based on ZMP control. System uses the motion state of each leg through fuzzy recognition algorithm of plantar force signal, and the corresponding control method. The sensor system of the lower limb skeletal outside the design and calibration, including the torso posture sensor, ankle joint potentiometer, interactive sensor, the insole plantar pressure sensor. Finally, respectively of the swinging leg the motion control experiment and supporting leg motion planning experiments.

【学位授予单位】:东南大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R318.1;TP242


本文编号:1760739

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/renliziyuanguanlilunwen/1760739.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7e482***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com