当前位置:主页 > 经济论文 > 房地产论文 >

多元回归和神经网络在武汉市房地产预测中的应用比较

发布时间:2018-02-27 21:24

  本文关键词: 房地产市场 预测 多元回归 神经网络 BP模型 出处:《华中科技大学》2013年硕士论文 论文类型:学位论文


【摘要】:房地产是一个复杂的综合性系统工程,关系的国民经济的命脉。房地产市场自身存在周期性波动规律,过大的波动幅度不利于房地产市场的持续稳定健康发展,进而影响到这个国民经济的可持续发展。房地产市场预测正是对房地产相关指标波动幅度的预测,,建立科学的房地产预测系统,可以有效地防止房地产市场的非正常波动,从而促进房地产市场的健康、稳定发展。这也就是本文的研究目的所在。 本文首先是介绍相关的预测模型,多元回归模型和神经网络模型。包括这两种模型的原理、算法和检验,以及神经网络模型中本文主要应用的BP模型。其次,分别利用多元回归模型和BP模型在预测和模式识别领域的成熟运用,以武汉市房地产市场为对象进行实证研究,并运用spss、Matlab等统计数据挖掘工具根据武汉市房地产市场相关数据建立相应模型,重点探讨基于BP神经网络理论的房地产预测的模型和方法,同时对两种模型的房地产预测模型和方法分别进行了分析。最后,通过对两种不同的预测方法做了预测分析比较后,得出比较优质的模型,形成一个综合预测分析系统,并以此为依据提出相关政策调控建议。通过对预测结果的分析,发现它基本符合武汉市房地产发展的实际情况,这表明本文所建立的房地产预测模型是有意义的,本文理论分析充分,所做的预测分析有一定实用价值。
[Abstract]:Real estate is a complex comprehensive system engineering, which is the lifeblood of the national economy. The real estate market has its own periodic fluctuation law, which is not conducive to the sustained, stable and healthy development of the real estate market. This will affect the sustainable development of the national economy. The real estate market forecast is precisely the prediction of the fluctuation range of the related indicators of real estate. The establishment of a scientific real estate forecasting system can effectively prevent the abnormal fluctuations of the real estate market. In order to promote the healthy and stable development of the real estate market, this is the purpose of this paper. This paper first introduces the related prediction model, multivariate regression model and neural network model, including the principle, algorithm and test of these two models, as well as the BP model which is mainly used in the neural network model. Using the multivariate regression model and BP model in the prediction and pattern recognition field of mature application, taking Wuhan real estate market as the object of empirical research, Using SPSS Matlab and other statistical data mining tools to establish the corresponding model according to the relevant data of Wuhan real estate market, focusing on the real estate forecasting model and method based on BP neural network theory. At the same time, the real estate forecasting models and methods of the two models are analyzed separately. Finally, after comparing and forecasting the two different forecasting methods, a better model is obtained and a comprehensive forecasting and analysis system is formed. Through the analysis of the forecast results, it is found that it basically accords with the actual situation of the real estate development in Wuhan, which shows that the real estate forecasting model established in this paper is meaningful. The theoretical analysis in this paper is sufficient, and the prediction and analysis made in this paper has certain practical value.
【学位授予单位】:华中科技大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:F299.23;F224;TP18

【参考文献】

相关期刊论文 前10条

1 於世为,诸克军,黎金玲,苏顺华;基于BP网络的人力资本预测研究[J];中国地质大学学报(社会科学版);2005年03期

2 王三明,蒋军成,姜慧;基于人工神经网络理论的系统安全评价[J];工业安全与防尘;2001年02期

3 胡金滨,唐旭清;人工神经网络的BP算法及其应用[J];信息技术;2004年04期

4 丁烈云;房地产周期波动成因分析[J];华中科技大学学报(社会科学版);2003年02期

5 丁烈云,徐泽清;城市房地产预警系统的设计与开发[J];基建优化;2000年06期

6 何国钊,曹振良,李晟;中国房地产周期研究[J];经济研究;1996年12期

7 庞素琳,黎荣舟,徐建闽;BP算法在信用风险分析中的应用[J];控制理论与应用;2005年01期

8 胡鹏,姚长学,钟叔平;房地产市场先行扩散指数预警监测系统设计[J];四川建筑;2003年02期

9 高文志;人工神经网络的发展、研究内容及应用综述[J];山东电子;1998年04期

10 范海雁,范炳全,张林峰;灰色BP网络预测方法在公交客流预测中的应用[J];上海理工大学学报(社会科学版);2003年01期



本文编号:1544413

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/fangdichanjingjilunwen/1544413.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户916b9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com