基于数据挖掘的房地产价格分析预测研究
[Abstract]:With the rapid development of China's market economy and the rising of real estate industry, the real estate industry has become one of the most important industries in the pillar industries of the national economy, so the rise and fall of the real estate industry is directly related to the individual. Collective and even national interests. Therefore, to ensure the healthy and stable development of the real estate industry is a crucial task. So what should we do to promote the healthy and stable development of the industry? Besides some necessary policies and measures, we should make reasonable forecast and analysis on the real estate price, so as to position the land auction price for the relevant government departments. Second, it can effectively help real estate developers budget the profits of the real estate. Finally, it can help buyers to understand the normal real estate market prices. In recent years, the continuous development of data mining technology, and infiltration of the real estate industry. As a result of various kinds of data information accumulation, gradually constitute a real estate data ocean. If only through observation or inductive method to predict the real estate prices, it will be a very heavy workload. Data mining technology is the process of extracting the unknown knowledge and information from a large amount of information, which is useful for every decision. This will provide strong technical support for real estate price forecasting. In this paper, we study the mining of association rules from the existing real estate transaction data, and get a more accurate model. Firstly, the correlation analysis of the property of real estate is carried out by using SQL2005, and the factors with high correlation degree are put forward as parameters from the many factors that affect the real estate price. Secondly, the model selected in this paper is verified by a practical example.
【学位授予单位】:南昌大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP311.13
【参考文献】
相关期刊论文 前10条
1 吴红华,吴建华;房地产估价的灰色模糊综合方法[J];广西工学院学报;2001年01期
2 贾士军,向长江;房地产定价中有关问题的探讨[J];广州大学学报(综合版);2001年11期
3 徐迎军;魏翠萍;李东;;OWA算子赋权新方法及其在房地产价格预测中的应用[J];工业技术经济;2010年04期
4 尹晓丽;方旭f;;数据挖掘技术在银行CRM中的应用[J];经济研究导刊;2009年20期
5 杨励雅;邵春福;;基于BP神经网络与马尔可夫链的城市轨道交通周边房地产价格的组合预测方法[J];吉林大学学报(工学版);2008年03期
6 刘君强;孙晓莹;潘云鹤;;关联规则挖掘技术研究的新进展[J];计算机科学;2004年01期
7 章伟;;粗糙集BP神经网络在房地产价格预测中的应用[J];计算机仿真;2011年07期
8 张所地;李斌;;基于AR(1)-MA(0)模型的房地产价格预测研究[J];科技创业月刊;2007年02期
9 刘锋;袁学海;;模糊数直觉模糊集[J];模糊系统与数学;2007年01期
10 张珊玉;徐辉;;基于离散灰色DGM(1,1)模型的房地产价格预测及其对策研究[J];科技广场;2013年01期
相关博士学位论文 前3条
1 赵春;基于数据挖掘技术的财务风险分析与预警研究[D];北京化工大学;2012年
2 白莹;基于贴近度指标的模糊质量控制图研究[D];中国矿业大学(北京);2012年
3 单志鹏;在宏观调控中土地政策对房地产市场的影响效果研究[D];吉林大学;2013年
本文编号:2169638
本文链接:https://www.wllwen.com/jingjilunwen/fangdichanjingjilunwen/2169638.html