龋病(Dental caries)是发生在牙齿硬组织(牙釉质)的细菌感染性疾病。该病在全球发病率高、流行范围广,是严重危害人类健康的主要口腔疾病之一。长期以来,经过各个国家的努力,采取各种方法预防龋病的发生,特别是氟化物的应用,使龋病的预防收到了明显的效果。但是目前的控制措施还未能完全有效地控制龋病的发生。同时由于氟化物的长期使用,出现了耐氟菌株,这使龋病的预防形势更加严峻。这就迫切需要人们开发新的预防龋病的措施及治疗药物。 链球菌群中的变形链球菌(Streptococcus mutans)为主要致龋菌。变形链球菌引起龋病的先决条件是其必须在牙齿表面定植,形成生物膜(Biofilm)即牙菌斑(Dental plaque)。定植在牙菌斑内的变形链球菌可以发酵蔗糖产酸,使牙釉质脱矿。形成生物膜被认为是多种口腔致病菌致病因素之一。因此寻找可以抑制变形链球菌及其生物膜的方法,是龋病预防、治疗的有效措施。 抗菌肽(Antimicrobial peptides,AMPs)是具有抗菌(包括细菌、真菌)活性短肽的总称,具有广泛的杀菌活性。细菌细胞壁是维持细菌生存所必需的基本结构之一,与真核细胞不同,其主要的化学成分是肽聚糖。肽聚糖合成中的一个关键反应是UDP-N-乙酰葡糖胺(UDP-GlcNAc)与磷酸烯醇式丙酮酸(PEP)转化为UDP-N-乙酰基-3-O-(1-羧基乙烯基)-D-葡糖胺(UDP-N-乙酰葡糖胺烯醇丙酮酸,UDP-Glc-NAc-EP)。MurA(UDP-N-乙酰葡萄糖胺烯醇式丙酮酸转移酶)是催化此反应的酶,因此它是肽聚糖合成过程中的一个关键酶。由于此反应途径无代谢旁路,并且在人体中不存在此种代谢途径。MurA酶可能是研制预防龋病药物的作用靶点之一。 因此,本课题的研究工作包括两部分。(1)筛选针对致龋性变形链球菌及其生物膜有效的抗菌肽,并揭示其作用机制。(2)针对变形链球菌细胞壁肽聚糖合成关键酶MurA作为药物靶点,通过克隆表达得到MurA蛋白,对其进行酶促动力学研究,建立高通量筛选MurA酶抑制剂的分子模型。 第一部分取得的研究结果: 1.抗菌肽对S. mutans的最低抑菌浓度(MIC) 应用96孔板微孔培养基稀释方法测定三种抗菌肽(P-113、PAC-525、D-Nal-Pac-525)对S. mutans的MIC。MIC分别为P-113>16μg/ml,PAC-5258μg/ml,D-NAL-PAC-5254μg/ml。确定最佳抗菌肽为D-Nal-Pac-525。 2. D-Nal-Pac-525对S. mutans的生长抑制作用 将不同浓度的D-Nal-Pac-525加入到对数期初期的S. mutans培养液中,于不同时间点取样,测OD600,绘制生长曲线。结果显示,当D-Nal-Pac-525浓度为2μg/ml S. mutans生长趋势没有变化,但当其浓度升高到4μg/ml S. mutans生长受到明显抑制。 3. D-Nal-Pac-525对S. mutans的杀菌活性 将D-Nal-Pac-525(终浓度分别为1、2、4μg/ml)加入到S. mutans培养液中(~1×108CFU/ml),厌氧培养,分别在2、4h取样,进行活菌计数,当D-Nal-Pac-525浓度在4g/ml时,与未加药的对照相比S. mutans活菌数量显著减少。 4.扫描电镜观察D-Nal-Pac-525引起S. mutans形态学的变化 将D-Nal-Pac-525加入到S. mutans(~108CFU/ml)培养液中,至终浓度为4μg/ml。37oC厌氧培养4h。离心后收集菌体,标本经过处理固定后用SEM进行观察。与未处理的对照组相比,D-Nal-Pac-525处理后的S. mutans呈现明显的形态学变化。处理组细菌菌体明显变长,菌体表面粗糙有皱褶。同时在处理组的照片上观察到细菌崩解之后形成的碎片。 5.透射电镜观察D-Nal-Pac-525引起S. mutans结构的变化 同样将D-Nal-Pac-525加入到S. mutans(~108CFU/ml)培养液中,至终浓度为4μg/ml。37oC厌氧培养4h。离心后收集菌体,标本经过处理固定后用TEM进行观察。D-Nal-Pac-525对S. mutans菌体表面结构的破坏作用。镜下未处理组菌体表面结构均一,呈高密度线。处理组菌体表面结构变模糊,甚至遭到破坏。同时在处理组菌体内部出现了高密度区域、细菌染色体凝集现象,胞内物质凝集及菌体细胞质膜破坏的现象。 6. D-Nal-Pac-525抑制S. mutans生物膜的形成 在PVC96孔板上建立S. mutans生物膜模型。将不同浓度的D-Nal-Pac-525(终浓度为0.25,0.5,1,2,4μg/ml)与S. mutans(~1×105CFU/ml)BHI培养基菌液(含3%蔗糖)共培养。结果显示D-Nal-Pac-525在浓度为2g/ml时可以抑制S. mutans生物膜的形成。OD600结果验证了肉眼观察的结果。D-Nal-Pac-525对已经形成的生物膜没有破坏作用。 7.对S. mutans生物膜相关基因的转录水平没有影响 经过D-Nal-Pac-525(4μg/ml)处理4h,S. mutans生物膜相关基因(brpA、vicR及gbpA)的转录水平没有发生变化。 第二部分取得的研究结果: 1.表达载体pET16b-Smu murA的构建 从S. mutans UA159菌株基因组数据库中查询出变形链球菌(UA159)murA基因(SMU_1525)的核苷酸序列(大小为1272bp)。设计PCR引物,在上、下游引物的5’端分别加入Nde I和Xho I限制性内切酶位点。以S. mutans UA159基因组DNA为模板,扩增出S. mutans murA基因。 将PCR产物与pMD18T克隆载体连接,再将其转化入感受态大肠杆菌Novablue中。用限制性内切酶Hind Ⅲ和EcoR I酶切的方法鉴定重组质粒。对pMD18-Smu murA中的murA基因进行DNA序列测定。将所测得的核苷酸序列与S. mutans UA159murA (SMU_1525)基因进行序列比对,完全一致。说明在本实验中获得的murA为正确的S. mutans UA159murA基因。再用Nde I、Xho I双酶切pMD18-Smu murA质粒。回收、纯化murA基因,连接到pET16b表达质粒的Nde I和Xho I位点,构建pET16b-Smu murA表达载体。用EcoR I酶鉴定阳性重组质粒。 2. S. mutans MurA蛋白在大肠杆菌BL21(DE3)中的表达、纯化 将pET16b-Smu murA表达载体转入大肠杆菌BL21(DE3)中。在37oC振荡培养3小时,达到对数生长期。然后加入终浓度为0.5mM IPTG,室温诱导细菌8小时,诱导携带pET16b-Smu murA表达载体的BL21(DE3)菌株表达重组MurA蛋白。MurA蛋白的N端与质粒pET16b上的组氨酸标签形成融合蛋白。用超声破碎诱导后的BL21(DE3)。分别对上清、沉淀组分进行SDS-PAGE和Westernblotting,结果表明S. mutans MurA蛋白在BL21(DE3)菌株中可溶性表达。 用组氨酸-Ni2+亲和层析技术纯化MurA蛋白。对蛋白进行蛋白定量(考马斯亮蓝法),其中第2管MurA蛋白的浓度为1150μg/ml。SDS-PAGE和Westernblotting结果表明MurA蛋白的纯度较高。 3. S. mutans MurA酶活性测定方法的建立 (1)高效液相色谱法(HPLC):用Nova-Pak C18色谱柱,以三乙胺-醋酸缓冲液为流动相,在260nm处检测反应底物UDP-GlcNAc的减少。 (2)化学显色法:S. mutans MurA催化反应的产物之一为磷酸,磷酸可以与钼酸铵形成磷钼酸复合物后使孔雀石绿颜色由黄绿变为蓝绿。用酶标仪在620nm处检测吸光值变化,以测定所生成磷酸的含量。 4. S. mutans MurA蛋白酶促反应动力学特性的研究 反应底物UDP-GlcNAc和PEP与不同浓度MurA在37oC反应不同时间。结果表明S. mutans MurA反应初速度酶浓度范围为1.84μg/ml,时间范围为5min。 分别改变反应的温度和pH值,利用酶标仪在620nm处吸光度值的变化,计算反应产物的生成量。确定S. mutans MurA酶蛋白的最适反应温度是37oC,最适pH值是7.5。 采用最佳反应条件,保证一种底物过量,改变另一种底物浓度采用双倒数法测其Km值和Vmax。37oC,pH7.5,酶浓度为1.84μg/ml,反应时间为5分钟。分别用不同的底物浓度,进行酶促反应。利用酶标仪检测620nm处吸光度值,反应产物的生成量。用双倒数作图法得出S. mutans MurA的Km值和Vmax。对于底物PEP,Km值为0.086±0.001mM,Vmax为0.098±0.001mM min-1mg-1。对于底物UDP-GlcNAc的Km值为0.120±0.005mM,最大速率Vmax为0.048±0.002mM min-1mg-1。 5.磷霉素对S. mutans MurA功能的验证 用磷霉素(Fosfomycin)进一步鉴定纯化的S. mutans MurA功能。将一定浓度的磷霉素与MurA蛋白在室温下预孵(preincubation)10min后,检测MurA蛋白活性变化。MurA酶的活性受到磷霉素抑制。在UDP-GlcNAc存在情况下,MurA受到的抑制作用更加明显。从而证明S. mutans MurA具有UDP-N-乙酰葡萄糖胺烯醇式丙酮酸转移酶活性。 结论:1.筛选的抗菌肽D-Nal-Pac-525可以抑制变形链球菌的生长及生物膜的形成,D-Nal-Pac-525可能成为新的预防龋病药物。 2.构建了高表达S. mutans MurA蛋白的工程菌株,可以获得大量可溶性MurA蛋白。 3.建立了快速、准确测定MurA酶活性的方法,并建立了高通量筛选MurA酶抑制剂的分子模型,为小分子抑制剂的筛选提供了物质保障。
【学位单位】:大连医科大学
【学位级别】:博士
【学位年份】:2013
【中图分类】:R781.1;R3411
【文章目录】:摘要
Abstract
前言
参考文献
第一章 抗菌肽 D-Nal-Pac-525 对变形链球菌生长及其生物膜形成影响的实验研究
材料和方法
1. 材料
1.1 菌株
1.2 抗菌肽的制备
1.3 主要试剂
1.4 主要仪器
2. 方法
2.1 变形链球菌生长曲线的测定
2.2 抗菌肽最低抑菌浓度 ( M I C ) 的测定
2.3 D-Nal-Pac-525 对 S.mutans 生长抑制试验
2.4 D-Nal-Pac-525 对 S.mutans 杀菌活性试验
2.5 扫描电镜
2.6 透射电镜
2.7 生物膜实验
2.8 生物膜相关基因转录水平的 RT-PCR
2.9 统计分析方法
结果
1. S.mutans UA159 的微生物学一般特征
2. S.mutans 生长曲线的测定
3. 抗菌肽最低抑菌浓度 ( M I C ) 的测定
4. D-Nal-Pac-525 对变形链球菌生长抑制试验
5. D-Nal-Pac-525 对 S.mutans 杀菌活性的测定
6. SEM 观察 D-Nal-Pac-525 引起的形态学变化
7. TEM 观察 D-Nal-Pac-525 引起的结构变化
8. D-Nal-Pac-525 对变形链球菌生物膜的作用
9. D-Nal-Pac-525 对生物膜相关基因转录水平的影响
讨论
结论
参考文献
第二章 变形链球菌 MurA(UDP-N-乙酰葡萄糖胺烯醇式丙酮酸转移酶) 的表达、纯化及酶促反应动力学研究
材料和方法
1. 材料
1.1 质粒、菌种
1.2 主要试剂
1.3 主要仪器
2. 方法
2.1 S.mutans 基因组的制备
2.2 S.mutans murA 基因的扩增及纯化
2.3 pMD18-Smu murA 重组质粒的构建
2.4 pET16b-Smu murA 表达载体的构建
2.5 S.mutans MurA 蛋白在在大肠杆菌 BL21 (DE3) 中的可溶性表达与鉴定
2.6 S.mutans MurA 酶活性的测定
2.7 S.mutans MurA 酶的酶促动力学研究
2.8 应用磷霉素验证 S.mutans MurA 的功能 49
结果
1. S.mutans murA 基因的扩增及纯化
2. pMD18-Smu murA 重组质粒的构建
3. S.mutans UA159 murA PCR 产物的 DNA 序列测定
4. p E T 16 b - S m u m u r A 表达载体的构建
5. S.mutans MurA 在大肠杆菌 BL21(DE3) 中的表达、纯化与鉴定
6. S.mutans MurA 酶活性检测方法的建立
7. S.mutans MurA 酶促反应动力学的研究
7.1 M u r A 酶初速度的确定
7.2 S.mutans MurA 酶最佳温度及 pH 值的确定
7.3 底物对 M u r A 酶的 K m 值
8. 用磷霉素进行 S.mutans MurA 酶功能的验证
讨论
结论
参考文献
综述
参考文献
附录
攻读学位期间发表文章情况
致谢
【相似文献】
相关期刊论文 前10条
1 周霞,诸葛洪祥;抗菌肽的分子生物学研究进展[J];国外医学.流行病学.传染病学分册;2002年05期
2 安春菊,盛长忠,李德森,杜荣骞;一类潜在的新药——抗菌肽[J];中国新药杂志;2003年09期
3 邓平建,房师松,杨冬燕,姜丽华,余祥强,黄永彤,黄自然;转抗菌肽CAD基因酵母饲料添加剂的安全性评价[J];卫生研究;2004年05期
4 刘先凯,赵彤言;昆虫抗菌肽研究进展[J];寄生虫与医学昆虫学报;2001年02期
5 张卫民,周殿元;抗菌肽与幽门螺杆菌感染[J];生命的化学;2003年01期
6 龚家玮;合成抗菌肽P18及其截短肽的结构和杀真菌活性[J];中国医药工业杂志;2004年07期
7 冯兴军,王建华,单安山;抗菌肽Lactoferricin生物学功能及其应用研究进展[J];天然产物研究与开发;2005年01期
8 赵瑞君,刘成芳,董建臻,张亚尼;家蝇抗菌肽的诱导提取及筛选[J];热带医学杂志;2005年02期
9 胡云龙,郭玉梅,赵学忠,戴祝英;昆虫抗菌肽作用于K_(562)细胞病理过程的超微结构研究[J];中国媒介生物学及控制杂志;1995年01期
10 邱晓燕,刘艳,陈小麟,陈奕欣;舍蝇抗菌肽的提取及其对肿瘤细胞生长的抑制作用[J];中华卫生杀虫药械;2003年01期
相关会议论文 前10条
1 王静;祝平;;抗菌肽在养殖生产中的应用研究进展[A];2008山东饲料科学技术交流大会论文集[C];2008年
2 梁延彬;;抗菌肽在养猪业中的应用进展[A];2011猪免疫抑制病防控与营养保健技术专题论坛会刊[C];2011年
3 明双喜;王沂蒙;刘艳;江国托;;抗菌肽作用机理及其在生产方面的研究进展[A];格莱姆抗菌肽——抗菌肽开发与应用技术研讨会论文集[C];2009年
4 张东玲;黄文树;粱英;关瑞章;宋凯;;日本鳗鲡肝脏抗菌肽的分离纯化[A];“细胞活动 生命活力”——中国细胞生物学学会全体会员代表大会暨第十二次学术大会论文摘要集[C];2011年
5 陆婕;钟雅;柳林;付康;陈正望;;家蝇蛆抗菌肽提取工艺研究[A];格莱姆抗菌肽——抗菌肽开发与应用技术研讨会论文集[C];2009年
6 马清泉;单安山;董娜;曹艳萍;;新型抗菌肽的分子设计和活性检测[A];第六次全国饲料营养学术研讨会论文集[C];2010年
7 彭兵;张树斌;王立安;;枯草芽孢杆菌菌株A抗菌肽的分离纯化及抗真菌机理[A];格莱姆抗菌肽——抗菌肽开发与应用技术研讨会论文集[C];2009年
8 袁天虎;张欣;胡泽汗;王芳;雷鸣;;抗菌肽Piscidin 1及其突变体稳定性的动力学研究[A];中国化学会第28届学术年会第13分会场摘要集[C];2012年
9 赵瑞君;刘颜岗;程t熛
本文编号:2830206
本文链接:https://www.wllwen.com/yixuelunwen/shiyanyixue/2830206.html